
The Efficiency Optimization Study of
a Geophysical Code on Manycore

Computing Architectures
Anna Sapetina, Boris Glinskiy

Institute of Computational Mathematics and Mathematical Geophysics SB RAS,
Novosibirsk

Russian Supercomputing Days (RSD) 2023

The intelligent support system
for solving compute-intensive problem

2

o The development of efficiently
parallel codes for modern
supercomputer systems requires:

• the knowledge about relevant
computational methods and
parallel architectures and
technologies

• choosing optimal numerical
methods and suitable target
architectures

o It is proposed to present the
accumulated knowledge about
solving compute-intensive problems
in an ontological form 1

o Similar projects: AlgoWiki, LuNA,
information resources based on
ontological descriptions

1 B. Glinskiy, Y. Zagorulko, G. Zagorulko, I. Kulikov, A. Sapetina. The Creation of Intelligent Support Methods for Solving
Mathematical Physics Problems on Supercomputers. CCIS, vol. 1129, pp. 427–438, 2019

Ontology is a formal explicit description of the domain terms and the relationship between them.

The intelligent support system realization

3

o Developed top-level ontology for solving compute-intensive problems of
astrophysics, geophysics and plasma physics

o The ontology of mathematical methods and parallel algorithms and the
ontology of parallel architectures and technologies, together with the
inference rules formulated by experts in a given subject area, make it
possible to select an efficient numerical method, a parallel algorithm, and a
computational architecture for solving a user's problem.

The propagation of seismic waves in complicated
elastic inhomogeneous media

4

o Explicit finite difference scheme on staggered grids

o 2nd order of approximation with respect to time and space

o Memory bound problem: the limiting factor is a speed of access to memory

Numerical solution of elastodynamic equations

The approach to the construction of the scheme is described in an article: Bihn M., Weiland T. A. Stable
Discretization Scheme for the Simulation of Elastic Waves // Proceedings of the 15th IMACS World Congress on
Scientific Computation, Modelling and Applied Mathematics (IMACS 1997). Т. 2, С. 75-80.

5

Z

Y

X

Size of grids for test calculations:

• 581×581×581 (∼11 Gb)

• 581×581×193 (∼3,6 Gb)

Considered Manycore Systems:
Intel and IBM Processors

6

Intel
Broadwell1

Processor

Memory

Peak performance

2 × Intel Xeon E5-2697A v4 (2.6 GHz, 16 cores, SMT2)

128 GB DDR4 RAM

1 331 GFLOPS

Intel KNL1

Processor

Memory

Peak performance

Intel Xeon Phi 7290 KNL (1.5 GHz, 72 cores, SMT4)

16 GB MCDRAM, 96 GB DDR4 RAM

3 456 GFLOPS

IBM
POWER9

Processor

Memory

Peak performance

IBM POWER9 Proc. (3.8 GHz, 2×12 core Typical, SMT8)

32×32 GB DDR4 RAM

2 918 GFLOPS

1 This systems is a part of clusters NKS-1P of SSCC ICMMG SB RAS

Key Features:
• a small number of cores (several decades)
• high clock frequency of cores
• vector process units
• support simultaneous multithreading (SMT)

Parallelization and optimizations:
Intel and IBM Processors

7

o Aligned: posix_memalign

o External loop is parallelized using OpenMP

o Internal loop is vectorized

• for Intel with AVX2/AVX-512 technologies

• Auto-vectorization VS Intrinsic functions

• Vector operations speed up the program several times (2.75 times for KNL)

for all time steps do
#pragma omp paraller for…
for all X points do

for all Y points do
#pragma simd
for all Z points do

U,V,W computations
end for

end for
end for
Snapshot check

end for

8

o Caching: different loops sequence – xyz / xzy / yxz / yzx / zxy / zyx

o Load balancing: collapse of two external loops in one – (zy)x

Parallelization and optimizations:
Intel and IBM Processors

0

5

10

15

20

25

30

35

xyz xzy yxz yzx zxy zyx (zy)x

P
ER

FO
R

M
A

N
C

E
G

A
IN

LOOP SEQUENCE

KNL Broadwell POWER9

9

o Load balance: choosing the OpenMP schedule type and chunk size

Parallelization and optimizations:
Intel and IBM Processors

1,0

2,0

3,0

4,0

5,0

P
ER

FO
R

M
A

N
C

E
G

A
IN

CHUNK

Intel Broadwell

static dynamic guided

0,4

0,6

0,8

1,0

1,2

1,4

1 4 8 16 32 64 128 256 512 1024 2048 4672

P
ER

FO
R

M
A

N
C

E
G

A
IN

CHUNK

Intel KNL

static dynamic guided

0,9

1,0

1,1

1,2

1,3

1 8 32 128 512 1752

P
ER

FO
R

M
A

N
C

E
G

A
IN

CHUNK

IBM POWER9

static dynamic guided

10

o Flat memory mode for Intel KNL: acceleration in 1,3 times

o Strong scalability and the use of simultaneous multithreading

Parallelization and optimizations:
Intel and IBM Processors

0

10

20

30

40

50

60

1 2 4 8 16 32 64 128 256 512

SC
A

LA
B

IL
IT

Y

STREAMS

KNL Broadwell POWER9

11

NVIDIA
Fermi1

Accelerator

Memory

GPU Peak

NVIDIA Tesla M2090 (1,3 GHz, 512 cores, 6 GB GDDR5)

96 GB DDR4 RAM

1 331 GFLOPS

NVIDIA
Kepler1

Accelerator

Memory

GPU Peak

NVIDIA Tesla K40 (0,75 GHz, 2880 cores, 12 GB GDDR5)

64 GB DDR4 RAM

4 291 GFLOPS

NVIDIA
Pascal2

Accelerator

Memory

GPU Peak

NVIDIA Tesla P100 (1,48 GHz, 3584 cores, 16 GB HBM2)

256 GB DDR4 RAM

10 608 GFLOPS

1 This systems is a part of clusters NKS-30T+GPU of SSCC ICMMG SB RAS (Rpeak− 85 TFLOPS)
2 This systems is a part of hybrid clusters of CC FED RAS (Rpeak − 56 TFLOPS)

Key Features:
• a large number of cores (hundreds and thousands)
• highly simplified cores operating at a low frequency
• complex memory system
• it is necessary to use threads many times larger than the number of cores

Considered Manycore Systems:
NVIDIA accelerators

12

o All calculations perform on the GPU

o Aligned: CudaMalloc3D

o Dimension and size of a thread block (Bsize)

• a 3D grid of blocks

• size for the component X must be a multiple of the length of the warp

• the specific size of a thread block are chosen empirically for each algorithm

• it possible to speed up the work of the program several times

Parallelization and optimizations:
NVIDIA accelerators

13

Parallelization and optimizations:
Tesla M2090

BSize PGain BSize PGain BSize PGain BSize PGain

512 256 128 64

8×8×8 0.52

16×8×4 1.0 16×4×4 1.05 16×4×2 0.96 16×2×2 0.99

32×4×4 1.47 32×4×2 1.49 32×2×2 1.48 32×2×1 1.26

64×4×2 1.42 64×2×2 1.65 64×2×1 1.38 64×1×1 1.35

128×2×2 1.45 128×2×1 1.44 128×1×1 1.41

256×2×1 1.2 256×1×1 1.41

512×1×1 0.98

Tesla K40

BSize PGain BSize PGain BSize PGain BSize PGain

1024 512 256 128

16×8×8 1.0 16×8×4 1.11 16×4×4 1.04 16×4×2 1.02

32×8×4 1.53 32×4×4 1.67 32×4×2 1.63 32×2×2 1.55

64×4×4 1.64 64×4×2 1.7 64×2×2 1.82 64×2×1 1.72

128×4×2 1.63 128×2×2 1.7 128×2×1 1.78 128×1×1 1.73

256×2×2 1.44 256×2×1 1.58 256×1×1 1.69

512×2×1 1.13 512×1×1 1.43

Tesla P100

BSize PGain BSize PGain BSize PGain BSize PGain

1024 512 256 128

16×8×8 1.0 16×8×4 1.02 16×4×4 1.02 16×4×2 0.98

32×8×4 1.25 32×4×4 1.29 32×4×2 1.23 32×2×2 1.23

4×64×4 0.49 32×8×2 1.23

4×4×64 0.48 32×16×1 1.12

64×4×4 1.24 64×4×2 1.26 64×2×2 1.25 64×2×1 1.08

128×4×2 1.25 128×2×2 1.27 128×2×1 1.12 128×1×1 1.08

256×2×2 1.22 256×2×1 1.14 256×1×1 1.13

512×2×1 1.1 512×1×1 1.14

14

o Constant memory: save the main constants used at each time step (Pgain about 4 %)

o Shared memory

• No effect on Fermi and Kepler

• Acceleration in 1,48 times on P100

Parallelization and optimizations:
NVIDIA accelerators

Threads block size
GPU architecture

Fermi Kepler Pascal

16×8×8 – 1.2 1.3

16×4×4 1.0 1.2 1.3

32×4×4 0.9 1.0 1.3

64×2×2 0.8 0.6 1.3

64×4×2 0.9 – 1.3

64×4×4 – 0.98 1.5

128×2×2 0.9 0.6 1.2

Performance Comparison

15

Rpeak: 1331 3456 2918 1331 4291 10608 GFLOPS

0

100

200

300

400

500

600

700

Broadwell KNL POWER9 Fermi Kepler Pascal

G
FL

O
P

S

Expert rules for choosing CPU optimizations

16

1. For 2D and 3D problem codes the inner loop of the algorithm should be vectorized, and
the outer loop in space should be parallelized using OpenMP.

2. For memory access efficiency, all central arrays must be aligned in memory, for
example, using the posix_memalign or _mm_malloc functions.

3. It is necessary to mark up the code using vectorization directives or use intrinsic for
efficient vectorization to fit the processor's vector registers size.

4. For better caching and load balancing in 3D codes, it is best to choose a nested
sequence of (zy)x loops, where the z and y loops are combined into one.

5. When using OpenMP to parallelize finite difference codes for multicore systems, it is
better to use schedule static with a maximum chunk size (default), for manycore
systems – schedule guided with a short chunk size.

6. When using SMT for parallelizing finite difference codes, 1 thread per core is better for
Intel processors, and the max thread number per core is better for IBM processors.

7. When using KNL to execute finite difference codes, it is preferable to use flat memory
mode instead of cache memory mode with all the main arrays placed in MCDRAM
memory.

8. If possible, the choice of manycore computing accelerators is preferable.

Expert rules for choosing GPU optimizations

17

1. If possible, it is better to load the entire problem into the memory of the GPUs

2. The dimension of the grid of blocks must match the dimension of the problem

3. The block size for 3D finite difference problems is better to use equal to 32 or 64 for
the x component and equal to 4 or 2 for the y and z components. The maximum
possible block size is not necessarily better.

4. Use constant memory to store frequently reused constants. The more of them, the
more this type of storage is preferable.

5. The use of shared memory for a small data reuse (memory-bound problem) is justified
on newer GPUs starting from the Pascal architecture.

6. If possible, the choice of multi-core computing accelerators is preferable

o The main nuances in the development of high-performance software for
clusters with various manycore processors and accelerators have been
investigated using the example of solving the geophysical problem of elastic
wave propagation in the three-dimensional elastic media.

o The effect on the performance of different code optimizations is
investigated.

o A software code has been developed, with a performance of about 390
GFLOPS for Intel KNL and a software code with a performance of about 620
GFLOPS for the NVIDIA Tesla P100.

o The expert rules are formulated for choosing development optimizations for
various manycore architectures in the intelligent support system for solving
compute-intensive problems of mathematical physics.

Conclusion

18
T = 6 s T = 10 s

Thanks for your attention!

19

