

Об использовании пакета инженерного анализа Фидесис в условиях Индустрии 4.0. Примеры решенных промышленных задач с использованием массивно-параллельных технологий

Левин Владимир Анатольевич

Заслуженный профессор Московского университета, Заслуженный деятель науки РФ, профессор кафедры «Вычислительная механика» механико-математического факультета МГУ имени М.В. Ломоносова, научно-технический руководитель компании Фидесис

Вершинин Анатолий Викторович

Профессор кафедры «Вычислительная механика» механико-математического

факультета МГУ имени М.В. Ломоносова,

технический директор компании Фидесис

«Цифровое средство производства»

В условиях новой промышленной революции (Индустрия 4.0), одной из основ которой стала цифровизация, во всех отраслях промышленности, с которыми связана наука механика, стали происходить стремительные изменения в востребованности и способах использования научных результатов.

Изменяется инструментарий, используемый при получении научных результатов.

Возникло понятие «цифровое средство производства» (ЦСП) — программный продукт, с помощью которого создается (проектируется) изделие.

В частности, это промышленные пакеты для моделирования при проведении инженерного анализа изделия (**CAE – Computer-aided engineering**) на стадии проектирования и эксплуатации.

Практически общепринятыми стали сквозное проектирование изделия и унификация методик проектирования, создание «цифровых двойников», оцифровка имеющихся технических архивов и вовлечение их в моделирование.

Решение задач МДТТ и теории прочности

До 1995 г. – до внедрения САЕ в расчетную практику	После 1995 г. – после внедрения САЕ в расчетную практику
Механическая постановка задачи	Механическая постановка задачи (САД-модель, материал, внешние воздействия)
Математическая постановка задачи(в общем случае - система нелинейных дифференциальных уравнений в частных производных с граничными и начальными условиями	Математическая постановка задачи заложена внутри пакета и автоматически адаптируется под конкретную задачу
Решение системы дифференциальных уравнений (обычно одним из методов для получения приближенного решения с тем или иным обоснованием единственности и сходимости)	Расчет в пакете (обычно МКЭ), оценка инженерной сходимости средствами пакета
Оценка НДС, на ее основе в соответствии с выбором критерия выделение «опасных областей»	Получение (в любом виде; обычно графическом, включая 3D) полей параметров НДС и практически автоматический вывод об «опасных областях» в соответствии с выбранными критериями прочности

Теория многократного наложения больших деформаций

(Теория для решения задач о перераспределении в теле больших деформаций, то есть задач, в которых в процессе нагружения изменяются (неоднократно) границы и (или) граничные условия)

Компания «Фидесис» - российский разработчик универсального программного комплекса нового поколения для высокоточных прочностных инженерных расчетов (CAE, computer-aided engineering).

Компания Фидесис основана в 2009 году сотрудниками и выпускниками кафедры вычислительной механики МГУ имени М.В. Ломоносова. Компания имеет статус резидента технологической долины МГУ имени М.В. Ломоносова.

Тестирование CAE Fidesys выполнено в строгом соответствии со стандартами NAFEMS. Компания является членом российской Ассоциации разработчиков программных продуктов (АРПП). САЕ Fidesys входит в реестр инновационной продукции ПАО Газпром и реестр отечественного ПО

Аттестация и сертификация

	an ala ala ala ala ala ala ala ala ala
СИСТЕМА СЕРТИФИКАЦИИ ГОСТ Р Федеральное агентство по техническому регулированию и метрологии	
СЕРТИФИКАТ СООТВЕТСТВИЯ	Фелеральное бюджетное учреждение «Научно-технический центр по ядерной и радиационной безопасности» (ФБУ «НТЦ ЯРБ»)
Срок действия с 26.12.2019 по 25.12.2024	Экспертный совет по аттестации программ для ЭВМ при Ростехнадзоре
ОРГАН ПО СЕРТИФИКАЩИИ RA.RU.11НВ56 Орган по сертификащии процукции ООО "Орнои". Адрес: 60033, FOCCИЯ, Владимирская обл., с Бладимир, ул Сущевская, док 37, помещение № 4. Телефон #7.4922/94301, адрес: электронной почты info@orion-set.ru	
ПРОДУКЦИЯ Програмонай комплеес САЕ Fidesy (Фидесис) версия 4.0 (комплееты	АТТЕСТАЦИОННЫЙ ПАСПОРТ ПРОГРАММЫ ДЛЯ ЭЛЕКТРОННЫХ
поставки Standard и Protessional) и модули в составе: САР. Рискуз РРС (чидесино), САРС Гебеуз Dynamics (Фидесис), САР Гебеуз Сотолено приложению бланки № 0102248-0102250. Серийный вытуск. 58.29.29	ВЫЧИСЛИТЕЛЬНЫХ МАШИН
CONTRACTOR AND A LODIAL HONOLUUN ADEVALUTOR	«CAE Fidesys Professional 3.1»
COOTBETCHEYEL PERDOACHERMIN HOPMALTEEDBAL QOXYMETHOD STRALL, CHELL, CHE	регистрационный № 573 от 05 декабря 2022 г.
HCO 9127-94	выдан Акционерному обществу «Красная Звезда» (АО «Красная Звезда»).
ИЗТОТОВИТЕЛЬ обявленте с отраняченией ответственность «ФИДЕСКС». ОТРЯ: 1107746291443, ИНН: 725692471, КИПС 7253001. Арек РОССИЯ, 11511, н. Мосья, ул. Алиниковски, д.S. телефон: 7 (495) 725-81-10 7 (495) 177-36-18, царее завистрошной почты: contact@cate-fidesys.com.	Адрес: Россия, 115230, Москва, Электролитный проезд д. 1А.
СЕРТИФИКАТ БЫААН Обаство соранизация опотехтемиеть «ВИДЕСКС». ОТН: 110714529143, НН: 772569241, КПТ: 772501031. Адрес. РОССИЯ, 115114, г. Мосява, ул. Летимковкая, д.5, темефонт. 7 (493) 725- 61-10 7 (493) 177-56-18, царев заветаровой потих: состасябедов-Тобруктов.	срок действия до 05 декабря 2032 г.
НА ОСНОВАНИИ Протокол вспатавий № 601/А-17/11/21 от 26.12.2019 года, вызванией Испытательной пабораторией Общества с ограниченной ответственностью "ТАНТАЛ" (оттестат васредствания РОСС RU31578.040ЛНО.ИЛ13)	Заместитель директора ФБУ «НТЦ ЯРБ», Предселатель Экспертного совета по аттестации программ для ЭВМ при Ростехнадзоре, канд. техн. наук
ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ Схеми серинфикации: 3 с	
руководитель органа <u>до</u> Е.Г. Зонин	
рантина Эксперт Данос Саникива Р.С. Аникива	ETSON
Сертификат не применяется при обязасельной сертификации	and all all all all all all all all all al

2002 2002

С.Н. Богдан

Статический расчет в лин. и нелин. постановке

Анализ устойчивости

Гармонический анализ

Модальный анализ

Динамический анализ в лин. и нелин. постановке

Линейно-спектральный анализ (сейсмика)

Аттестация проводилась на двух секциях Секция №4 – Прочность Секция №6 – Строительная

Область применения по аттестационному паспорту: Не зависит от типа ОИАЭ.

ARBYTE

Интерфейс препроцессора CAE Fidesys

Разработка пакета по стандартам NAFEMS

обеспечивает надежное тестирование и точность расчетов

Партнерство с ведущими производителями операционных систем, процессоров и серверного оборудования позволило обеспечить надежную работу пакета CAE Fidesys

Интеграция с CAD системами и другими CAE решениями делает пакет Fidesys удобным элементом IT инфраструктуры

Интерфейс постпроцессора CAE Fidesys

O ΠAKETE FIDESYS

Fidesys поддерживает импорт наиболее востребованных САD-форматов, а также импорт сеток и моделей из других программных комплексов

	AUTODESK.	→ BRICSCAD
S SOLIDWORKS	🕉 simulia	🕉 CATIA
SIEMENS NX	Patran	MSC Nastran ⁻
Ansvs	Ansys	/\nsys
	LS-DYNA	FLUENT
		📚 ptc

ИМПОРТ МОДЕЛЕЙ В FIDESYS

- ACIS (*.sat, *.sab);
- IGES (*.igs, *.iges);
- STEP (*.stp, *.step);
- AVS (*.avs);
- Genesis/Exodus (*.g, *.gen, *.e, *.exo);
- Facets (*.fac);
- GAMBIT Real Geometry (*.dbs);
- Parasolid (*.x_t, *.x_b);
- CATIA (*.CATPart, *.CATProduct);
- SolidWorks (*.sldprt, *.sldasm);
- Pro/E (*.prt, *.asm);
- STL Files (*.stl);
- AzoreCFD (*.azmsh);
- Stanford Polygon (*.ply);
- Wavefront Object (*.obj);
- Patran (*.pat, *.neu, *.out);
- Ideas (*.unv);
- JT (*.jt);
- Additive (*.cli);
- Abaqus (*.inp);
- Fluent (*.msh);
- Nastran (*.bdf);
- Siemens NX (*prt);
- LS-Dyna (*.k*);
- Ansys (*.cdb).

Интеграция с FlowVision

- ✓ Решение связанных (FSI) задач;
- Интерфейс прямой интеграции между решателями;
- ✓ Использование независимых неконформных расчетных сеток в CFD и FEA решателях.

Интеграция с Универсальный механизм

- Расчет динамики механических систем с учетом упругих деформаций отдельных частей;
- Прямая интеграция между пакетами на основе метода Крейга-Бэмптона;
- Учет изменения параметров движения и структуры механизма на напряженнодеформированное состояние детали

Интеграция с Euler

- Расчет динамики механических систем с учетом упругих деформаций отдельных частей;
- Прямая интеграция между пакетами на основе метода Крейга-Бэмптона;
- Учет изменения параметров движения и структуры механизма на напряженно-деформированное состояние детали

Анализ прочности деформируемого твердого тела с учетом физической нелинейности

- Нелинейно упругие модели материалов (Мурнаган, Муни-Ривлин)
- Упругопластические модели (Мизес, Друкер-Прагер)
- Неассоциированный закон пластического течения
- Линейное/Полилинейное/Степенное упрочнение

 $f(\sigma_{ij}, \varepsilon_{ij}^{p}) = 0, \quad d\varepsilon_{ij}^{p} = d\lambda \frac{\partial g}{\partial \sigma_{ij}}$

Частота вращения, об/мин

 $.10^{4}$

- Расчет на неконформных сетках с нахлестами/зазорами между контактирующими телами => отпадает необходимость в предварительном упрощении/исправлении САD-модели
- Непрерывность решения по перемещениям и напряжениям даже в случае зазоров/нахлестов!
- Автоматическое определение пятен контакта на основе настраиваемого зазора

Граничные условия на контактной границе (Зенкевич, 2014):

 $x^{1}|_{AB} = x^{2}|_{AB}$ $t^{1}|_{AB} = -t^{2}|_{AB}$

Связи на компоненты перемещений (обобщенные условия Дирихле):

$$x_{s} = F\left(x_{m}\right) = \sum_{i=0}^{n} N_{i}\left(\xi\right) x_{m}^{i} \implies u_{s} - \sum_{j} N_{j}\left(\xi\right) u_{m}^{j} = 0$$

Условия для контактной пары:

• узел и грань принадлежат разным телам для предотвращения самопроникновения;

• расстояние от узла до его проекции на грани меньше заданного зазора;

• проекция узла на плоскость грани находится внутри грани;

• угол между нормалью к ведущей поверхности в точке проекции и нормалью к ведомой поверхности больше заданного угла (180 градусов в идеальном случае).

Поскольку некоторые узлы могут стать как ведущими, так и ведомыми в уравнениях ограничений, необходимо устранить повторяющиеся ограничения, чтобы избежать переопределенной системы уравнений. Таким образом, полученная прямоугольная система уравнений ограничений может быть преобразована в редуцированную форму (RREF) с использованием методов линейной алгебры для трапециидации прямоугольной разреженной матрицы (например, с использованием QR-факторизации). В результате ведомые степени свободы будут отделены от основных степеней свободы и используются для дальнейшего процесса исключения неизвестных (Shephard 1984).

CFIDESYS

Связанный контакт: пример

[•]Неконформная сетка из спектральных элементов смешанного типа и различных порядков

Непрерывность решения задачи даже при наличии зазора между телами

Полноволновое моделирование контактного взаимодействия

Перемещения (суммарные)

-0.000e+00

0.000e+00-

Множественный контакт

Промышленный пример: Тепловой анализ роторной сборки

Поддержка неконформных криволинейных сеток для задания периодических граничных условий.

Высокоточная дискретизация по пространству Метод Спектральных Элементов (МСЭ)

- Высокая точность и устойчивость процесса решения в нелинейных задачах
- Автоматизация анализа на сеточную (численную) сходимость
- Экспоненциальное повышение точности решения с ростом порядка схемы

Определение напряжений и деформаций в палубной проушине

Спектральноэлементная сетка

Напряжения в закреплении

Метод спектральных элементов

Левин В. А., Вершинин А. В. Численные методы. Параллельные вычисления на ЭВМ Т.2 (Нелинейная вычислительная механика прочности . Цикл монографий в 5 томах под. ред. В.А. Левина). — ФИЗМАТЛИТ Москва, 2015. — 544 с.

Базисные функции в 1D — восстановленные полиномы Лагранжа по корням полиномов

Криволинейная сетка в препроцессоре

Результаты расчета на спектральных элементах в постпроцессоре

0

Stress Mises

3.5757e+8

-2.5513e+8

1.527e+8

4.6e+008

- Учет одновременно трех видов нелинейных эффектов
- Множественный самоконтакт в процессе деформирования
- Возникновение и развитие полос локализации пластических деформаций
- Закритическое моделирование при больших упругопластических деформациях

Максимизация длины самого короткого ребра при дискретизации границ криволинейных подобластей.

условие Куранта:

Отображение эталонного элемента на криволинейный спектральный элемент высокого порядка с использованием базисных функций МСЭ – изопараметрическая аппроксимация.

Линейные (слева) и изопараметрические (справа) спектральные элементы

Спектральная сходимость (superconvergence, Bernardi and Maday 1992) на гладких решениях вычислительной схемы с минимальными численной дисперсией и диффузией (Komatitsch 1997): $||u - u_h|| \le Ch^N e^{-N}$ в H^1 -норме, где h – характерный размер сеточного элемента, N – порядок элемента, C – константа, не зависящая от h и N. $\mathbf{x}(\boldsymbol{\xi}) = \sum_{a=1}^{n_a} l_a(\boldsymbol{\xi}) \mathbf{x}_a$ $\frac{\partial \mathbf{x}}{\partial \boldsymbol{\xi}} = \sum_{a=1}^{n_a} \frac{\partial l}{\partial \boldsymbol{\xi}} \mathbf{x}_a$

Массивно-параллельная реализация на GPU

- Haбop kernels: ассемблирование по пространству, интегрирование по времени, граничные условия
- МСЭ-сетка отображается на Grid-сетку: каждый спектральный элемент обрабатывается отдельным блоком (Block), а соответственно отдельные узлы внутри спектрального элемента отдельными потоками (Thread)
 => эффективное использование Shared (разделяемой) памяти для кэширования данных внутри элемента при вычислении пространственных производных
- Размер блока автоматически определяется порядком спектрального элемента, количество блоков постоянно при фиксированной сетке
- Использование атомарных операций при ассемблировании (сборке глобального вектора узловых сил и матрицы масс из локальных на элементах)

$$\begin{cases} M_{u} \frac{\partial^{2} u}{\partial t^{2}} + M_{uw} \frac{\partial^{2} w}{\partial t^{2}} + C_{u} \frac{\partial u}{\partial t} + C_{uw} \frac{\partial w}{\partial t} + K_{u}(u,w) - F_{u} = 0 & M_{u} = \int_{\Omega} N^{T} \rho \, N d\Omega; \\ M_{uw} \frac{\partial^{2} u}{\partial t^{2}} + M_{w} \frac{\partial^{2} w}{\partial t^{2}} + C_{uw} \frac{\partial u}{\partial t} + C_{w} \frac{\partial w}{\partial t} + K_{w}(u,w) - F_{w} = 0 & C_{u} = \int_{\Omega} N^{T} \rho d_{u} \, N d\Omega; \\ C_{uw} = \int_{\Omega} N^{T} \rho d_{uw} \, N d\Omega; \\ K_{u}(u,w) = \int_{\Omega} \sigma(\nabla u, \nabla w) \cdot \nabla N \, d\Omega; \\ K_{w}(u,w) = -\int_{\Omega} p_{f}(\nabla u, \nabla w) \nabla N \, d\Omega + \int_{\Omega} N^{T} \frac{\eta}{k} N d\Omega \frac{\Delta w}{\Delta t}; \\ F_{u} = \oint_{\Gamma} N^{T} \sigma_{n} d\Gamma; \\ F_{w} = \oint_{\Gamma} N^{T} \rho d\Gamma; \end{cases}$$

Δ*T* – физический шаг по времени; Δ*t* – шаг по псевдовремени в методе установления (метод динамической релаксации)

Решение (векторы перемещений *u*, *w*) на (*n*+1)-м шаге по времени в методе установления будем искать в следующем виде (явная схема Ньюмарка 2го порядка):

$$u(t_{n+1}) = u_{n+1} = u_n + v_{un}\Delta t + a_{un}\frac{\Delta t^2}{2}$$
$$w(t_{n+1}) = w_{n+1} = w_n + v_{wn}\Delta t + a_{wn}\frac{\Delta t^2}{2}$$
$$v_{un+1} = v_{un} + (1 - \beta)a_{un}\Delta t + \beta a_{un+1}\Delta t$$
$$v_{wn+1} = v_{wn} + (1 - \beta)a_{wn}\Delta t + \beta a_{wn+1}\Delta t$$

Схема условно (в соответствии с условием Куранта) устойчива при eta > 0.5

Использование графов в CUDA 10 В Применение метода Ньюмарка для численного интегрирования по времени подразумевает многократный (несколько десятков тысяч итераций по времени) вызов kernels. Для оптимизации данной процедуры и сокращения накладных расходов на запуск kernels используются CUDA graphs – графы вызова kernels, позволяющие Е выполнять асинхронные запуски kernels и операций с Enc памятью (memcpy/memset).

Вычислительная платформа

(в рамках лаборатории вычислительной гидрогеомеханики кафедры вычислительной механики МГУ имени М.В. Ломоносова)

HPE Apollo 6500 Gen10:

- 4xTesla A100 NVLink 3.0
- Пропускная способность памяти для обменов между GPU - 600 ГБ/с
- Поддержка технологии NVIDIA Grid для удаленного запуска CUDA-приложений и 3D рендеринга

NVIDIA Tesla A100:

- Операции с двойной точностью **9,7** Терафлопс
- Стековая память НВМ2е объемом 80 Гб
- 108 мультипроцессоров, **6912** ядер CUDA
- Пропускная способность глобальной памяти 2039 ГБ/с
- Поддержка CUDA 12

Локализация упругопластических деформаций

Безмозгий И. М., Казакова О. И., Магжанов Р. М., Смердов А. А., Чернявский А. Г., Чернягин А. Г. Результаты тестирования и оценка возможности построения системы специализированных решений для прочностного анализа на базе программного комплекса Фидесис. Чебышевский сборник, 2017.

и стические деформации О.052 5.510-02 0.01391 0.02596 0.13998

Расчет модели с образованием зон пластичности. МСЭ высокоточно моделирует образование и развитие полос скольжения Людерса. Метод спектральных элементов обеспечивает:

более корректное решение задач с глубокой пластикой;

возможность уточнения КЭ моделей без

перегенерации расчетных сеток

🕐 Локализация полос Людерса в 3D

- Современная модификация МКЭ
- Наиболее эффективен для динамического анализа
- Расчет нестационарных задач с быстропротекающими процессами
- Повышенная скорость и точность расчета
- Возможность эффективного распараллеливания с применением модуля Fidesys HPC

Динамическая задача о моделировании сейсмических колебаний

Fidesys Dynamics

Метод спектральных элементов. Нестационарные задачи с высокой точностью

Результаты численного моделирования

Двуслойный массив с системой трещин (длина 0.5-10 м, углы падения +/- 15°), являющихся источником вторичных волн.

Скорости (суммарные)

Гексаэдральная сетка, импортированная из Petrel

Shared earth—critical insight

- FIDESYS
 - ✓ Полноволновое сейсмическое моделирование в трехмерной постановке;
 - ✓ Прямая передача трехмерной геологической модели из Petrel в CAE Fidesys;
 - Моделирование распространения волновых процессов для любых систем наблюдений, включая 3D
 - ✓ Генерация синтетических сейсмограмм

Цифровая геологическая модель «Западная Сибирь»

- ✓ 16×12 км по латерали и от 0 до -4.1км м по вертикали
- ✓ 144 слоя по 39 961 значимых ячеек в каждом слое
- Смоделированы зоны вечной мерзлоты с очагами растепления
- ✓ Залежи УВ с соответствующим изменением свойств
- Разрывные нарушения, способные генерировать дифрагированные волны

Результаты численного моделирования

- Полноволновое трехмерное моделирование методом спектральных элементов для детальной модели, содержащей более 5 миллионов элементов и **1.2 миллиарда** расчетных МСЭ-узлов (5й порядок).
- Время расчета 5 часов (50000 шагов по времени, 0.3 секунды на шаг).
- Рассчитаны как поверхностные волны Рэлея, так и полный набор объемных отраженных, преломленных и рефрагированных волн, продольных, поперечных и обменных.
- Учитываются всевозможные факты дифракции и многократных отражений – всё то, что происходит в реальной среде.

Спасибо за внимание!

Вершинин Анатолий Викторович

Email: <u>a.v.vershinin@cae-fidesys.com</u> Teл.: + 7 (495) 177-36-18 WWW: <u>www.cae-fidesys.com</u> SaaS: <u>https://prove.design</u> YouTube: <u>https://www.youtube.com/user/Fidesys</u> Примеры: <u>https://fidesys-solvers.ru</u> VK: https://vk.com/fidesys