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Technology is not well scaling

Exascale achieved, how to get higher performance?
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Running out of steam on every front

Call for architectural innovation!

1. Figure from Kunle Olukotun, Lance Hammond, Herb Sutter, Mark Horowitz




Homogeneous Architecture

Homogenous architecture refers to the systems which use only

one type of processor or core (mainly CPU)

@ NVIDIA Tesla V100
@ NVIDIA AT00

NVIDIA A100 SXM4 40 GB
@ NVIDIA Tesla A100 80G
@ \VIDIA Tesla V100 SXM2
@ AMD Instinct MI250X
@ NVIDIA Tesla A100 406G
@ NVIDIA A100 SXM4 80 GB

@ NVIDIAH100

@ NVIDIA Tesla P100

@ Others
The majority of systems on the TOP500 list, Fugaku from RIKEN and Fujistu is so far the
particularly the smaller ones still adopt fastest homogenous supercomputer,
homogenous architecture where only CPUs 537Pflops achieved with ~158K compute
are used for computing. nodes.



U Using Homogenous Architecture for Exascale is challenging

Power Problem Scalability Problem

Assume a ~10x performance boost for Existing pre-exascale Fugaku has over
each generation, how can we achieve 150K compute nodes.

that with a reasonable power budget? Managing such a large num of nodes
CPUs alone is far from enough. itself is very challenging.

Most GPUs (wide vector processors) may Designing scalable interconnect is hard
even not be enough either. for such a scale

Heterogenous architecture seems to be a must for Exascale and beyond




Rmax Rpeak Power
Rank  System Cores (TFlop/s) (TFlop/s) (kW)
1 Jaguar - Cray XT5-HE Opteron 6-core 2.6 GHz, Cray/HPE 224,162 1,759.00 2,331.00 4,950
DOE/SC/0ak Ridge National Laboratory
United States
—
2 Roadrunner - BladeCenter @522/LS21 Cluster 122,400 1,042.00 1,375.78 2,345
finiband, IBM
DOE/NNSA/LANL
United States
g Kraken XT5 - Cray XT5-HE Opteron é-core 2.6 GHz 98,928 831.70 1.028.85 3,090
Cray/HPE
National
United S
4 JUGENE - Blue Gene/P Solution, IBM 294,912 825.50 1,002.70 2,268
German y
5 Tianhe-1 - NUDT TH-1 Cluster, Xeon E5540/E5450, AT 71,680 563.10 1.206.19
Radeon HD 4870 2, Infiniband, NUDT
National SuperComputer Center in Tianjin/NUDT
China
6 Pleiades - SGI Altix ICE 8200EX, Xeon QC 3.0 56,320 544.30 67326 2,348
GHz/Neh n EP 2.93 Ghz, HPE
NASA/Ar ter/NAS
United S
7 BlueGene/L - eServe Solution, IBM 212,992 478.20 596.38 2,329
DE/NNSA/LLNL
United S
8 Intrepid - Blue Gene/P Solution, IBM 163,840 £458.61 557.06 1,260
DOE/SC/Ar e Nat rator’
United States
9 Ranger - SunB 62,976 433.20 579.38 2,000
nfiniband, Oracl
Texas Advance
United States
10 R 41,616 423.90 487.74
f

United States

The early days of heterogenous supercomputers

The List.

* In the TOP500 list in Nov. 2009
« Among the TOP10 systems in the list, only two use
accelerators.

Roadrunner uses IBM PowerXCell processors
together with AMD Opteron DC cores.
PowerXCell acts similar to modern accelerators
and contribute to the majority of performance.
Opteron runs the OS

Tianhe-1 uses Intel Xeon CPUs and ATl Readon
GPUs. It is the first supercomputer (get into

TOPS5) to propose the heterogenous architecutre
of CPU+GPU



The early days of heterogenous supercomputers

Rmax Rpeak Power
Rank System Cores (PFlop/s) (PFlop/s) (kW)
Frontier - HPE Cray EX235a, AMD Optimized 3rd 8,699,904 1,194.00 1,679.82 22,703 \
Slin HPE
. Didae { |
DO dge i
Un { '

The List.

In the TOP500 list in Jun. 2023

Out of the TOP10 systems in the list, 9 systems
adopt the heterogenous architecture.

 i.e. Frontier, LUMI, Leonardo, Summit, Sierra,
Sunway TaihuLight, Perlmutter, Selene and
Tianhe-2A

e « Fugaku is the only system which belongs to the
T homogenous architecture

- Tianhe-1A CPU+GPU design dominates (7/9 in
the TOP10) the modern heterogenous
supercomputers

Italy

China




Heterogenous Architecture

 Since Tianhe-1A first adopted the CPU+GPU architecture (get No.1 in TOP500) in 2010, it is
now the defacto standard for advanced high-performance computers.

« GPUs contribute to the majority share of performance for modern HPC systems.

 Frontier uses the same architecture to reach exascale.
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Vendor: NUDT

1. Tom Evans. Exascale Computing at ORNL Past, Current, and Future: Opportunities for High Energy Physics




Heterogenous Architecture

« Similar to Frontier, the other onging exascale US systems also use GPUs as the
accelerators.
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El Capitan (AMD Instinct MI300X) Aurora(Intel Data Center GPU Max Series)




Heterogenous Architecture

« EuroHPC is leading the development of both ARM CPUs (Rhea series) and accelerators
(RISC-V based) to enable Exascale computing for Europe.

hea Family - Genl GPP

Arm & Risc-V (STX, VRP, ..)

Arm Neoverse V1 Core — N6 Ciret Bl <
External IP's FIrst el

cFAC — ACcelerator
v2.0 sent for manufacturing
v2.0 Platform & SDV

PAC - Accelerator
v1.5 Platform & SDV

Menta eFPGA IP definition

Kalray RISC-V SDK release

2019-2021
>AC V1.5 sent for manufacturing Dual chiplet implementation
KVX RISC-V based accelerator RISC-V KVX FPGA emulator
architecture definition .

EPAC - AcCcelerator
v1.5 multi node demonstrator
v2.0 architecture implementation
v2.0 eFPGA integration

The European Processor Initiative (EPI) project roadmap?

1. https://www.european-processor-initiative.eu/project/epi/




Heterogenous Architecture

« China is exploring new accelerators for Exascale computing.
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MT-2000+ accelerator Sunway 26010-Pro compute engine

Tianhe Exascale Prototype, Vendor: NUDT Sunway Exascale Prototype, Vendor: NRCPC



GPU ecosystem is splitting

Each new generation of machines has been significantly different from previous ones
« We used to have NVIDIA GPUs. But now different GPU vendors appear in the HPC market
« AMD even start to dominate in terms of the performance share

FY 2012 FY 2016 FY 2018 FY 2021 FY 2022 FY 2023
| m Exascale WG \AM DR @ NVIDIA Tesla V100
' OB Systems :é* Cf @ NVIDIA A100
1Bl NVIDIA HPHAMD) / RD m#

NVIDIA A100 SXM4 40 GB
S @2 @ NVIDIA Tesla A100 80G
EE A CrayﬁnrgTKNL - NVIDIA. _ @ NVIDIA Tesla V100 SXM?2
§ | TN CUDA @ AMD Instinct MI250X
! Crayfintl XeonkiL @ NVIDIA Tesla A100 406G
"""""""""""""""""""" T T 1 : @ NVIDIA A100 SXM4 80 GB
e, R y LA @ NVIDIAH100
""""""" Cray/Intel Xeon/KNL 1B HPE/Intel @ NVIDIA Tesla P100
| To date, only NVIDIAGPUSs | | GPUs from three different vendors [wvfrm;,%zz_3 @ Others

GPU types for top HPC systems in US? accelerator/co-processor performance share?

Portability becomes a critical issue now

1. A. Dubey et al. 2021
2.top500.0rg




There are indeed solutions to unify the ecosystem

SYCL source code

.. .
LT SEmwmEmn &nlopls-teedlalrgln:a.c.rgf :equ"ed)
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hipSYCL

—

clang
(Intel SYCL) ComputeCpp

PTX devices

e NVIDIA GPUs

Any CPU
(OpenCL + PTX

CUDA kernels) %, Any CPU
: OpenCL + SPIR(-V)J{ Any CPU *4  (with OpenMP)
OpenCL + SPIR-V NVIDIA GPUs P (-V) y pe

OpenCL 1.2

e pretty much anything

(CUDA + PTX e Intel CPUs (with OpenMP A | _
RP— kernels) * Intel GPUs AR OPenCL + SPIR-di HBEm
* Intel GPUs ¢ AMD GPUs ® pocl (CPUs. NVIDIA  § AMp GPUs  ® NVIDIA GPUs
e Intel FPGAs (depending on driver GPUs)
stack) e Xilinx FPGAs
e ARM Mali
® Renesas R-Car https://www.khronos.org/sycl/

One can write the code with unified programming model to obtain the application
portability

e.g., Intel OneAPI built upon SYCL

Market dominators may not want to unify?




Heterogenous Architecture beyond GPUs

« GPUs are more specialized than CPUs, but still fit many applications. There are multiple
levels of accelerator domains.

A

@ High-Level Synthesis
4= _ )M - Designed for a very specific task (C/C++ RTL)

SELTAe |
LTI

o Examples: FPGA, CGRA

Application-Specific Architectures

o Co-designed hardware for single
application/domain

o Examples: Anton, SIGMA, TPU, ASV

saseaJoul Ajljiqewwesdoud
performance increases

General Purpose
o Suitable for many applications/domains
o Examples: GPGPU, GPDSP




Application-Specific Architectures

Anton is way more effective for MD simulations compared with general HPC

DHFR ApoAl ATPase STMV Ribosome ?I;’i \l/ ?I;’i \2/ ?::)/s-lli
# atoms 24K 92K 328K 1,067K 2,181K 10,666K | 21,333K | 72.404K
Anton 3 512-node (ps/day) - - 166.9 121.1 93.2 224 16.0 1.9
Anton 3 64-node (ps/day) 2122 152.4 90.6 423 254 — — —
Anton 2 512-node (ps/day) 87.2 63.7 345 13.9 5.0 — - .
Non-Anton (us/day) (})E‘Eg Egi ?(5‘{7) &1 020 ») g'_gg"; ‘(’3 g:(z)g‘l‘ (‘Q} 0.12@) | 012 | 0.008@

Quadro

RTX A6000

GPU

MDGRAPE

-4A

HYDRA
cluster

Anton3 is ~100x faster than the general HPC (Summit) of the same period.




Al — Another hot topic for Application-Specific Architectures

Frontier supercomputer Human brain
(June 2020)

Speed 1.102 exaFLOPS ~1 exaFLOPS (estimate)
Power 21 MW 10-20 W
requirements
Dimensions | 680 m” (7,300 sq ft) 1.3-1.4 kg (29-3.1 Ib)
Cost $600 million Not applicable
Cabling 145 km (90 miles) 850,000 km (528,000 miles)
of axons and dendrites
Al is to create intelligent systems that can perform Memory | 75 TB/s read; 35 TB/s write; | 2.5 PB (petabyte
. .. . . 15 billion IOPS flash storage
tasks typically requiring human intelligence system, along with
. R . the 700 PB Orion site-wide
« Human brain has 100 billion low-precision Lustre file system
neurons Storage 58 billion transistors 125 trillion synapses, which
. can store 4.7 bits of
« The power is only 20 Watt information each

Architecture for Al should achieve
high performance + high power efficiency Smirnova, L et al. (2023). Organoid intelligence (Ol): the new frontier in

biocomputing and intelligence-in-a-dish. Frontiers in Science, 0.




Al — Another hot topic for Application-Specific Architectures

TPU FPGA GPU CPU

: General Computing >

Core Core Core Core

units units vector us vector units
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A general GPU provides the programmability Google TPU, as well as other Al ASICs, sacrifice
that many projects may consider as “fat” programmability for efficiency and performance




U What for post-exascale computing?

Projected performance development?

® Performance development of HPC is 10 EFopls
1 EFlop/s

slowing down.

100 PFlop/s
® What engine should we rely on for 10 PFlopis

1 PFlop/s

building the post-exascale systems?

100 TFlop/s

10 TFlop/s

Performance

1 TFlop/s

100 GFlop/s

10 GFlop/s

1 GFlop/s

100 MFlop/s
1990 1995 2000 2005 2010 2015 2020 2025

Lists

® Sum A # = #500

1. top500.0rg



Possible Directions

Extreme heterogeneity

More accelerators and
platforms are required for

complex HPC workflows.

Disaggregated
Architecture

Disaggregated architecture
can provide better flexibility

and resource utilization

New Computing
Paradigms

New computing paradigms are
promising to achieve higher

performance for certain apps.

Wafer Scale Integration

WSI can significantly improve
the performance of memory

access and communication



Extreme heterogeneity

FACT The spacing of circuits on an integrated CONSEQUENCE Different accelerators
circuit is reaching the scale of individual use transistors more efficiently by
atoms, if we cannot put more transistors on specializing the architecture to the
the chip, we must use the space wisely. target scientific problem.
Provide exascale computing to a wide range of applications. Provide post-exascale computing to a specific application.
GPU | [ ]
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CPU CPU
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Now Future (maybe)



Extreme heterogeneity

* Instead of putting multiple accelerators into the machine, a recent
startup named Tachyum is designing a chip which unifies CPU, GPU,
TPU... INTO A SINGLE CHIP.

W * So far, their design is still under evaluation on FPGA.

¥ © The key programmability problem does not change no matter if you

put accelerators separately, or as a whole.

 Under EH architecture, it’s extremely unlikely that code will be
performance portable across different platforms.

* As architectural diversity grows for EH architectures, and
complexity grows, the current approach to write different code
for each accelerators will become infeasible.

The current programming models and monolithic OS need to evolve to adapt EH architecture

SW/HW codesign is becoming more important than ever




New Computing Paradigms

neuromorphic
computing

Neuromorphi j nd systems
J Y <

1S
Brain-inspired nenwewmorphic computing

Neuromorphic architectures leve-
rage massive parallelism, sparse
activity, and event-driven compu-
ting. Suitable for machine learning,
scientific computing as well as
modeling cognitive tasks.

guantum
computing

Quantum computing can overtake
classical HPC in certain tasks. i.e.,
quantum advantage. Therefore,
integrating quantum computing
into HPC systems attracts much
attention.

photonic
computing

Photonic computing is carried out
via multi-polarization channels,
leading to an enhancement in
computing density by several orders
compared to that of conventional
electronic chips.




New Computing Paradigms

Host Program Quantum
il Bl oo Kemel
Ty
____ Interface :
mD Classical Runtime
=Q
g s Q.&C. || Puise
g Compller Generator
2 3 ‘

Classical Host

PeuUUNaIoyH

I

Quantum Runtime

Quantum Coprocessor

Real Machine Classical Simulators
ik QuantumSim
Shared Superconducti CACTUS
Memory 30 - QICircult
: QCP $
e Trapped lons
Super-
Clusters compulars

In NUDT, we’re working on compilers, programming models to enable easier programming on

guantum computers. We proposed Quingo, which is a Programming Framework for
Heterogeneous Quantum-Classical Computing with NISQ Features.




Disaggregated Architecture

Current HPC systems consist of massive compute and memory resource that are tightly coupled in nodes.
more than 90% of jobs utilize less than 15% of the node memory capacity

In the current HPC architectures, accelerators have isolated memory space.
much energy and time are spent for data movements.

CXL-connected shared DRAM over TeraPHY optical 1/O

Fiber shuffle (Loom)

DDRS DIMM

CXL Hub/FO

DDRS DIMM

CXL Hub/FO

https://ayarlabs.com/webinar-disaggregated-system-architectures-for-next-generation-hpc-and-ai-workloads/



Wafer Scale Integration

WSl itself is not a new concept.
The major issues for application of WSl include generality, technical problems such as testing and yield
statistics, and practical problems such as packaging, ruggedness, repairability, and system partitioning.
e ‘ ——Conference Notes of ISSCC 1984

Cerabras WSE2 Largest GPU

2.6 Trillion transistors 54.2 Billion transistors
46225 mm? silicon ‘ Cerebras CS-2 system

-
850,000 cores 826 mm? silicon

Chips like these have only recently been truly produced, but with very high COST (millions of dollars for one chip).

It remains a question what applications can benefit commercially from such chips?




Thanks




Porting may be easy, but performance portability?

« There are projects, such as RAJA, which tries to provide better performance portability
« RAJA seeks to make a single-source code performance portable across heterogenous
HPC architectures, through parallelizing loops on different platforms

/*
An example loop which adds two vectors, ported to RAJA and parallelized with OpenMP,

shown below (taken from the RAJA examples): CPU memory , GPU memory

1
RAJA: :omp_parallel_for_exec - executes the forall loop using the Ich.i;;mgﬂrr.,(flo.t) a(100); E 1 Umpire does
#pragma omp parallel for directive chai::ManagedArray<const float> b(100); E l data allocation
%/ M and copy
RAJA: :RangeSegment range(0, 100); 1
RAJA: :forall<RAJA::omp_parallel for_exec> 1
i // Run GPU kernel I
RAJA: :RangeSegment(©, N), [=](RAJA::Index_type i
( . g' : _( )» [=1C ~type 1) { RAJA: :forall<|RAJA::cuda_exec |>( !
C[i] = A[1] + B[1i]; range, RAJA_LAMBDA (int i) { :
s a[i] += b{i]; (o J—— o )
v i - )
where RangeSegment(@, N) generates a sequential 1list of numbers from @ to N. The same lo // Run CPU kernel :
op parallelized and executed on a GPU with CUDA looks similar: RAJA: : forall<|RAJA: :seq_exec >( 1 CHAI
o range, RAJA_LAMBDA (int i) { M
/ std::cout << “a[i] = “ << a[i] << “\n"; 1 conpes e
RAJA: : forall<RAJA: : cuda_exec<CUDA_BLOCK_SIZE>> } ) ) : i) ik
(RAJA: :RangeSegment (@, N), [=] _ device_ (RAJA::Index_type i) { |

C[i] = A[i] + B[i]; . ' :
¥ The CHAI library implements a managed array abstraction

checkSolution(C, N); to automatically copy data

But essentially, making RAJA widely applicable is not much easier than manual porting




Application-Specific Architectures

« An molecular dynamics simulation models the motion of a set of atoms over a large
number of discrete time steps. Why is Anton so fast for MD? Take Anton as an example

Molecular Dynamics Special-purpose Hardware Optimized Algorithms
*long-range forces . time —> | |
N network |positions . forces 1 Ipositions
HTIS l interactions i i
ﬁﬁ:}fﬁ flex lintegration |

forces

(a)

special-purpose =
datapaths ato il <
interactions
D general-purpose
processars grid-based
convolution
— communication
atom~—grid
. \interactions
Compute forces b 7

time —
network positions| forces positions
______________________ - HTIS interactions
Update positions and velocities flex integration

v Very low end-to-end internode communication latency for fine-grained messages

v Application-specific compression reduce the size of messages between nodes

v A new hardware synchronization primitive which supports fast fine-grained
synchronization for parallel MD application

1. Anton2:Special-purpose computing for molecular dynamics simulations




Application-Specific Architectures

MDGRAPE-4A from RIKEN' is also designed for accelerating molecular dynamics
MDGRAPE-4A Board: 8 LSIs MDGRAPE-4A Full System: 64 Boards

e

SRR R B

1 ”

Manufacturer: Tokyo Electron Device,Integran, HOKS, Fujikura
Power: 65kW

Cooling: air-flow

Cost: ~$6,500,000

Computer System Elapsed time for single step (us) ‘ Performance (ps/day,dt=2.5fs)
MDGRAPE-4A 200 1
Commodity Cluster 1,000 0.2
GPU 2,000 0.1
Laptop 100,000 0.002

1. https://www.r-ccs.riken.jp/exhibit_contents/SC20/mdgrape-4a.html



How does TPU achieve its goal?

Instruction Energy Breakdown | Operaton | Energy(n)
ADD 0.64
_ 25pJ | 6pJ| Control N 70 py L1 REG 111 _
i L2 > REG 2.21 ;
; T T T L3 > REG 9.80 ;
. I-Cache Access Register File Add MEM -> REG L i
Access Prefetch 65.08

[Kestor, 2014|

- Data movement and memory become the major performance and energy bottleneck §

« Pushes programming models to more localized data movement




its goal?

ieve i

U How does TPU ach
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Figures from the introduction of Cloud TPU by Google

GPU| Although added many parallel compute units, each still needs to frequently access memory

-
o
—

no need to access memory

better fits neural networks




U Graphcore (IPU) uses model parallelism

chip GPU/TPU

parallelism

T
“nEmR
NN
© IEEEE ©

Model and data
are separated

Processors [l

Memory

Memory and Model and data

chips are
separated.

memory
access

are tightly
coupled




New Computing Paradigms

Although promising, it may still take a long way before we see real integration of these paradigms in HPC.

“Our quantum computing research really focuses on quantum
practicality and scalability. We're trying to bring quantum out
of the physics lab and into a commercial reality. ”

\Anne Matsuura, Intel

“I’m curious what it can bring, but | don’t see any benefits in the near-time.
Although I’'m a skeptic, | believe there are certain applications where quantum
computing will be probably helpful in the future. ”

Natalia Vassilieva
Cerebras Systems director of product

“The unfortunate piece about this is that there is only a handful of
algorithms that provide speed-up (over classical) and every other
algorithm is basically composed out of those..” ot d

\ Torsten Hoefler

Professor, ETH Zlrich




