CubicEoS.jl — расширяемые изотермические вычисления фазового равновесия флюидов с открытым исходным кодом Производительность кодов для моделирования материалов и веществ — Суперкомпьютерные дни в России 2023

Степан Алексеевич Захаров, В.В. Писарев

ОИВТ РАН, МФТИ

С.А. Захаров, В.В. Писарев (ОИВТ РАН, МФТИ)

CubicEoS.jl

- https://github.com/vvpisarev/CubicEoS.jl
- Создан на языке программирования Julia.
- Содержит решение задачи изохорного-изотермического фазового равновесия.
- Включает обобщённое кубическое уравнение состояния¹. Есть 25 веществ.
- Расширяем на произвольные уравнения состояния. Есть MBWR², CP-PC-SAFT³.
- Поддерживает автоматическое дифференцирование.

¹A. I. Brusilovsky, *SPE Reservoir Engineering*, 1992, **7**, 117—122.

²В. А. Younglove и J. F. Ely, *Journal of Physical and Chemical Reference Data*, 1987, **16**, 577—798.

³I. Polishuk, Industrial & Engineering Chemistry Research, 2014, **53**, 14127—14141= २२३२२३२० ३ ०००

С.А. Захаров, В.В. Писарев (ОИВТ РАН, МФТИ)

VT задача фазового равновесия Обзор

- VT-постановка менее проработана, чем РТ-постановка, но активно прорабатывается последнее десятилетие.
- Удобна для ряда задач: вычислительная гидродинамика с методом контрольного объёма; модели транспортных коэффициентов, коррелированных на плотность.
- Две стадии решения: проверка стабильности однофазного состояния и фазовое расслоение.
- Наиболее популярная модель флюида: кубическое уравнение состояния.
- Наиболее популярный численный метод решения: метод Ньютона.

Свободная энергия Гельмгольца

Задача фазового равновесия

$$a' = a(\mathbf{N}, V, T) = -\frac{PV}{RT} + \frac{1}{RT} \sum_{i=1}^{n} N_{i}\mu_{i},$$
$$a'' = a(\mathbf{N}', V', T') + a(\mathbf{N}'', V'', T'').$$
$$\mathbf{N}' + \mathbf{N}'' = \mathbf{N}, \quad V' + V'' = V.$$
$$\Delta a(\mathbf{N}', V') = a(\mathbf{N}', V', T) + a(\mathbf{N} - \mathbf{N}', V - V', T) - a(\mathbf{N}, V, T).$$

- J. Mikyška и A. Firoozabadi, Fluid Phase Equilibria, 2012, 321, 1—9
- Т. Jindrová и J. Mikyška, Fluid Phase Equilibria, 2013, 353, 101—114

Проверка стабильности однофазного состояния

Задача проверки стабильности

Дана смесь *n* компонентов с количествами вещества **N** = [*N*₁,...,*N_n*][⊤], занимающая объём *V* при температуре *T*. Необходимо определить, является ли однофазное состояние смеси термодиманически устойчивым (стабильным).

Задача оптимизации

Рассматриваются однофазная и система с фазой-зародышем $N'_i \ll N_i$, $V' \ll V$.

$$\mathsf{R}\mathsf{T} \times \mathsf{D}(\mathbf{c}',\mathsf{T}) \equiv \lim_{\mathsf{V}' \to 0} \frac{\Delta a}{\mathsf{V}'} = \sum_{i=1}^n \big[\mu_i(\mathbf{c}',\mathsf{1},\mathsf{T}) - \mu_i(\mathbf{c},\mathsf{1},\mathsf{T}) \big] c_i' - \big[\mathsf{P}(\mathbf{c}',\mathsf{1},\mathsf{T}) - \mathsf{P}(\mathbf{c},\mathsf{1},\mathsf{T}) \big].$$

 $\min_{c' \in \mathcal{C}'} D(\mathbf{c}'), \quad \mathcal{C}' = \{c'_i: \ c'_i \geq 0, \ и \ c'_i \ удовлетворяют уравнению состояния\}.$

Если $D < -10^{-5}$, то однофазное состояние неустойчивое. Всего 4 попытки с разными начальными условиями.

J. Mikyška и A. Firoozabadi, Fluid Phase Equilibria, 2012, 321, 1—9

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ ● ● ●

Двухфазное равновесие (расслоение)

Задача двухфазного равновесия (расслоение)

Дана смесь *п* компонентов с количествами вещества $\mathbf{N} = [N_1, ..., N_n]^{\top}$, занимающая объём *V* при температуре *T*. Необходимо определить равновесные состояния фаз $(\mathbf{N}', \mathbf{V}')$ и $(\mathbf{N}'', \mathbf{V}'')$.

Задача оптимизации

 $\min_{\mathbf{N}',\mathbf{V}'\in\mathcal{S}'}\Delta a(\mathbf{N}',\mathbf{V}'),$

 $S' = \{ (N', V') : 0 \le N'_i \le N_i, 0 < V' < V$ и удовлетворяются требования УРС $\}.$

Начальное приближение строится по концентрации фазы-зародыша **с**[′], полученной из проверки стабильности.

T. Jindrová и J. Mikyška, Fluid Phase Equilibria, 2013, 353, 101—114

Метод оптимизации

Метод BFGS (Broyden—Fletcher—Goldfarb—Shanno)

9 Выбор направления спуска^{*a*} $\mathbf{d}_k = -\mathbf{B}_k^{-1} \nabla f(\mathbf{x}_k)$.

- 2 Приближённая минимизация $\varphi_k(\alpha) = f(\mathbf{x}_k + \alpha \mathbf{d}_k)$ поиском вдоль направления^b.
- Обновление решения x_{k+1} = x_k + α_kd_k и проверка критериев сходимости.
- Если сходимость не достигнута, обновление приближения матрицы Гессе.

^aJ. Nocedal и S. J. Wright, *Numerical optimization*, Springer, New York, 2nd ed, 2006. ^bW. W. Hager и H. Zhang, *SIAM Journal on Optimization*, 2005, **16**, 170–192.

Metod BFGS и метод Ньютона

Метод BFGS обладает сверхлинейной сходимостью (против квадратичной), но

- Решение системы на направление спуска за $O(n^2)$ против $O(n^3)$.
- Вычисление \mathbf{B}_k (rank-2 update) против вычисления $\nabla^2 f$ (и, возможно, разложения Холецкого).
- В РТ-постановке^а BFGS сходился лишь на несколько итераций позднее, поэтому выигрыш по времени достижим за счёт более дешёвых итераций.

^aD. V. Nichita и М. Petitfrere, *Fluid Phase Equilibria*, 2015, **406**, 194—208.

Алгоритм решения

Уравнения состояния

УРС А.И. Брусиловского (1992)

$$P(\mathbf{N}, V, T) = \frac{NRT}{V - \mathcal{B}(\mathbf{N})} - \frac{\mathcal{A}(\mathbf{N}, T)}{[V + \mathcal{C}(\mathbf{N})][V + \mathcal{D}(\mathbf{N})]}.$$
$$(RT)^{-1} \times \mu_i(\mathbf{N}, V, T) = \ln N_i - \ln V + \ln \gamma_i. \quad \text{(Mikyska и Firoozabadi, 2011)}$$
$$\ln \gamma_i(\mathbf{N}, V, T) = -\int_{V}^{+\infty} \left[\frac{1}{\xi} - \frac{1}{RT}\frac{\partial P}{\partial N_i}(\mathbf{N}, \xi, T)\right] d\xi. \quad \text{(Mikyska и Firoozabadi, 2011)}$$

СР-РС-SAFT, И. Полищук (2014)

$$a(\mathbf{N}, V, T) = a^{ideal} + a^{hs} + a^{chain} + a^{disp}.$$
$$(RT)^{-1} \times \mu_i(\mathbf{N}, V, T) = \left(\frac{\partial a(\mathbf{N}, V, T)}{\partial N_i}\right)_{N_{j \neq i}, V, T}, \quad (RT)^{-1} \times P(\mathbf{N}, V, T) = \left(\frac{\partial a(\mathbf{N}, V, T)}{\partial V}\right)_{\mathbf{N}, T}.$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Пример расчёта фазовой диаграммы

- Расчёты на сетке из концентраций (0—20 кмоль/м³) и температур (180—400 К).
- Красно-жёлто-синяя область двухфазная; цветом показана мольная доля газовой фазы (красный = 1).
- Зелёная кривая точки росы (dew).
- Фиолетовая кривая точки начала кипения, пузырьковые точки (bubble).
- Чёрные кривые изобары (МПа).

э

2 E 5

Проверка стабильности

Эффективность алгоритмов

Физические переменные (концентрации) с'

Задача хуже обусловлена и требует В₀ = ∇²f.
Требуемое число итераций линейно растёт.

Масштабированные переменные^а $2\sqrt{c'_i}$

^aD. V. Nichita, *Fluid Phase Equilibria*, 2017, **447**, 107–124.

- Задача лучше обусловлена, Гессиан близок к единичной матрице и не требуется вообще^а.
- Число итераций слабо зависит от размера системы.

^аС. А. Захаров и В. В. Писарев, *Математическое* моделирование, 2023, **35**, 51—64.

CubicEoS.jl

Фазовое расслоение

- Число итераций не зависит от уравнения состояния.
- Число итераций зависит линейно от числа компонентов, по 3 итерации на компонент.
- Вычислительная сложность фазового расслоения O(n³).
- Есть отказы: наибольшая доля 0.3% для смеси 7 компонентов, CP-PC-SAFT.

Постановка теста

Задача

Расчёт фазовой диаграммы смеси в диапазоне концентраций и температур. Используется равномерная сетка 200 × 200 = 40000. Процессор AMD EPYC 7351, 16-core, 64 GiB.

Холодная стратегия

Расчёты выполняются независимо друг от друга во всех узлах сетки на доступном количестве потоков. Задачи перемешиваются и раздаются потокам, время перемешивания и создания задач не учитывается.

Горячая стратегия

Расчёты выполняются по волновому шаблону, при этом в точке новой волны начальное приближение решения строится по рассчитанным ранее соседям. Задачи формируются динамически (фронт волны) и раздаются потокам.

Эффективность горячей стратегии

Эффективность параллелизации

- Кубический УрС насыщение эффективности параллелизации на 4-6 потоках.
- Горячая стратегия особенно эффективна для SAFT-УрС на небольшом числе потоков.
- Горячая стратегия неэффективна для кубического УрС при использовании более двух потоков.

Выводы

- CubicEoS.jl open-source программный пакет для VT расчётов фазового равновесия на основе квазиньютоновской оптимизации. Использовать можно произвольное уравнение состояния флюида, можно использовать автоматическое дифференцирование.
- Разработанный алгоритм фазового равновесия обладает высокой отказоустойчивостью. Протестирован на смесях углеводородов и типичных примесях в природных месторождениях.
- При расчётах фазового равновесия с простым уравнением состояния стоит использовать малое число потоков. У более сложных уравнений (SAFT) запас параллелизации гораздо выше.
- При однопоточных расчётах рекомендуется использовать стратегии с генерацией начальных условий из предыдущих расчётов. Например, в гидродинамических расчётах можно использовать решение на предыдущем временном слое.

イロン イロン イヨン イヨン 二日