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INMOST

INMOST (www.inmost.org, www.inmost.ru) is a short for:

Integrated

Numerical

Modeling and

Object-oriented

Supercomputing

Technologies

Contributors: Igor Konshin, Kirill Nikitin, Alexander Danilov, Ivan Kapyrin, Yuri Vassilevski, Alexei 
Chernyshenko (INM RAS, IBRAE RAS), Igor Kaporin (CMC RAS) Dmitri Bagaev, Andrei 
Burachkovski (MSU), Ruslan Yanbarisov, Alexei Logkiy, Sergei Petrov, Ivan Butakov (MIPT), Timur 
Garipov, Pavel Tomin, Christine Mayer (Stanford), Ahmad Abushaikha (HBKU), Longlong Li 
(IMCAS), et al
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• Distributed meshes (moving, adaptive)

• Distributed linear system assembly

• Parallel linear solvers

• Automatic differentiation

• Nonlinear system assembly

• Coupling of unknowns and models

http://www.inmost.org/
http://www.inmost.ru/


INMOST Linear Solvers

• Preconditioned BiCGStab(l) method1

• Preconditioner MPI-parallelization using Additive Schwarz Method

• Preconditioner OpenMP-parallelization using Bordered Block-Diagonal 
Form9,10

• Multi-level preconditioner based on the second-order Crout-ILU2,3

• Condition estimation of the inverse factors determines the coarse system
and tunes dropping tolerances4,5

• Scaling and reordering of the local system on each successive level6,7,8
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Additive Schwarz Method

7

• Global matrix is 
composed of local 
blocks.

• Extend blocks to 
localize the 
connection.

• Restricted version.

• More iterations 
with more blocks

Distributed system

Matrix overlapping



Doubly-Bordered Block-Diagonal Form 

First level Schur complement

8Larger Schur complement with more blocks



Second-order Crout Incomplete LU
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• Dual-threshold dropping:

− τ2 for factorization.

− τ for iterations.

• Running condition 
estimation:

− κ = max(||L-1||,||U-1||)

− τ/κ=const tuning.

− Limit growth of κ.

Dense row accumulator: Transposed matrix traversal:



Schur Complement
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Partially factorized matrix.

⚫ Part that leads to growth of κ is 
accumulated in C:

− system reordering after factorization.

• Next level system is the Schur complement:

− S = C - E (DU)-1 D(LD)-1F.

− Requires forward and backward 
substitution with sparse right hand side.

− Fill-in control is critical.

− Second-order ILU is critical.
Schur complement computation

Computation of operators



Analogy to the Algebraic Multigrid

• Coarse system should contain the largest error of the smoother.

• Condition estimation reveals the error in the smoother and provides 
the coarse-fine splitting of the system.

• Ideal prolongation P=(-EB-1,I) and restriction R=(-FB-1,I)T.

• (not satisfied by the present method).

• Schur complement corresponds to the coarse system.

• Universal but much more computationally complex.

• (definitely not linear computational complexity)
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Oil & Gas: Black Oil

• Suitable for large problem solutions:

• Black oil problem

• ×3 unknowns per cell

• 100M and 200M cells (320 cores, INM RAS cluster):

• Scaled up to 1B of cells on 9600 Cray cores by 
Ahmad Abushaika at HBKU, Qatar.

• Optimal preconditioner is Constrained pressure 
residual method with AMG.

12



Oil & Gas: Geomechanics

• Poroelasticity:

• ×4 unknowns per cell

• 1.2M cells (INM RAS cluster, Lomonosov):

Solution of saddle-point problem.

Optimal preconditioner: Fixed-stress splitting with AMG
13



Blood flow: Right Ventricle

14

Every step we adapt and balance the mesh, calculate geometry and 
recompute discretization coefficients, but the biggest challenge is the 
linear solution of the coupled saddle-point system.

Optimal preconditioner: GMG with Vanka smoother

vorticity

decomposition



Blood flow: Right Ventricle

15

Every step we adapt and balance the mesh, calculate geometry and 
recompute discretization coefficients, but the biggest challenge is the 
linear solution of the coupled saddle-point system. 

Optimal preconditioner: GMG with Vanka smoother

Number of cells

Linear iterations



AMG
Classical approaches to coupled problems: bootstrap adaptive AMG, AMG on Schur 
complement for mimetic finite difference method, constrained pressure residual and 
AMG for black oil problem, Bramble-Pasciak method with AMG for Stokes and 
Navier-Stokes

16



Bootstrap Adaptive Algebraic Multigrid

• Setup phase:

• Smoother or preconditioner setup.

• Near null-space approximation.

• Coarse-fine space splitting.

• Interpolation and restriction 
operators.

• Coarse space computation: matrix-
matrix multiplication.

• Solve phase:

• Smoother application.

• Matrix-vector multiplication.

17
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Near Null-Space Vector

• Linear system: 𝐴𝐱 = 𝐛, where 𝐴 is 𝑁 × 𝑁 matrix.

• Let 𝐴𝐞 ≈ 𝟎, where vector 𝐞 is near null space of the system:

𝑎𝑖𝑖𝐞𝑖 ≈ − 

𝑖≠𝑗

𝑎𝑖𝑗𝐞𝑗

• For elliptic system the best guess is: 𝐞 = 𝟏 – classical AMG.

• Adaptive multigrid: exploit information on 𝐞 for general systems.

• Bootstrap process: try to estimate 𝐞 with several iterations of the available smoother

(Ideal 𝐞 is an eigenvector corresponding to smallest eigenvalue – extremely expensive to 
find! Instead we search for error outside of smoother range) 19



Space and Connections Splitting

• Coarse-fine splitting of the grid elements: Ω = 1, … , 𝑁 = 𝐶 ∪ 𝐹.

• Connections of the element: 𝑁𝑖 = 𝑗 | 𝑖 ≠ 𝑗, 𝑎𝑖𝑗 ≠ 0 .

• Strong-weak splitting of connections: 𝑁𝑖 = 𝑆𝑖 ∪ 𝑊𝑖 = 𝐼𝑖 ∪ 𝑇𝑖 ∪ 𝐸𝑖 ∪ 𝑊𝑖.

• 𝐼𝑖 = 𝑆𝑖 ∩ C – interpolatory connections.

• 𝑊𝑖 - weak connections, absorbed by the diagonal coefficient.

• 𝑇𝑖 ∪ 𝐸𝑖 = 𝑆𝑖 ∩ 𝐹 – strong non-interpolatory connections.

• 𝑇𝑖 – twice-removed interpolation, requires ∀𝑗 ∈ 𝑇𝑖 ∶ 𝑆𝑖 ∩ 𝑆𝑗 ∩ 𝐶 ≠ ∅.

• 𝐸𝑖 – absorbed by the coefficient, do not satisfy the condition.

• Ruge-Stuben rules for the coarse-fine splitting:

• ∀𝑖 ∈ 𝐹: ∀𝑗 ∈ 𝑆𝑖 ∩ 𝐹: 𝑆𝑖 ∩ 𝑆𝑗 ∪ 𝐶 ≠ ∅ (𝐸𝑖 is always empty)

• 𝐶 is a maximal independent set in the graph of strong connections.

20



Interpolation Method

• Using introduced spaces:

𝑎𝑖𝑖𝐞𝑖 ≈ − 

𝑖≠𝑗

𝑎𝑖𝑗𝐞𝑗 = − 

𝑗∈𝐼𝑖

𝑎𝑖𝑗𝐞𝑗 − 

𝑗∈𝑊𝑖

𝑎𝑖𝑗𝐞𝑗 − 

𝑗∈𝑇𝑖

𝑎𝑖𝑘𝐞𝑘 − 

𝑗∈𝐸𝑖

𝑎𝑖𝑗𝐞𝑗

• Twice-removed interpolation for 𝑇𝑖:

𝑎𝑖𝑘𝐞𝑘 ≈ − 

𝑗∈𝑆𝑖∩𝑆𝑘∩𝐶

𝑎𝑖𝑘𝑎𝑘𝑗𝐞𝑘𝐞𝑗

σ𝑙∈𝑆𝑖∩𝑆𝑘∩𝐶 𝑎𝑘𝑙𝐞𝑙

• Now 𝐴𝐞 ≈ 𝟎 turns into expression:

𝑎𝑖𝑖 + 

𝑗∈𝑊𝑖

𝑎𝑖𝑗

𝐞𝑗

𝐞𝑖
𝐞𝑖 ≈ −𝜂𝑖 

𝑗∈𝐼𝑖

𝑎𝑖𝑗 + 

𝑘∈𝑇𝑖

𝑎𝑖𝑘𝑎𝑘𝑗𝐞𝑘

σ𝑙∈𝑆𝑖∩𝑆𝑘∩𝐶 𝑎𝑘𝑙𝐞𝑙
𝐞𝑗

• Multiplying coefficient for 𝐸𝑖:

𝜂𝑖 =
σ𝑘∈𝑆𝑖

𝑎𝑖𝑘𝐞𝑘

σ𝑘∈𝑆𝑖∖𝐸𝑖
𝑎𝑖𝑘𝐞𝑘

21



Interpolation Method

• Interpolation:

𝐞𝑖 = 

𝑗∈𝐼𝑖

𝜔𝑖𝑗 𝐞𝑗

• Weights:

𝜔𝑖𝑗 =
−𝜂𝑖𝐞𝑖

𝑎𝑖𝑖 + σ𝑗∈𝑊𝑖
𝑎𝑖𝑗𝐞𝑗

𝑎𝑖𝑗 + 

𝑘∈𝑇𝑖

𝑎𝑖𝑘𝑎𝑘𝑗𝐞𝑘

σ𝑙∈𝑆𝑖∩𝑆𝑘∩𝐶 𝑎𝑘𝑙𝐞𝑙

• Prolongator:

𝑃𝑖 =


𝑗∈𝐼𝑖

𝜔𝑖𝑗𝛿𝑗 𝑖 ∈ 𝐹

𝛿𝑖 𝑖 ∈ 𝐶

• Coarse-space system:
𝐵 = 𝑃𝑇𝐴𝑃

22



Choosing Spaces

• Modification to the Ruge-Stuben coarse-fine splitting rules:

• ∀𝑖 ∈ 𝐹: 𝜂𝑖 − 1 ≤ 𝜅, where 𝜅 is a tunable parameter.

• 𝐶 is a maximal independent set in the graph of strong connections.

• Classical selection of strong connections by Ruge-Stuben:

• 𝑆𝑖 = 𝑗 | − 𝑎𝑖𝑗 ≥ 𝜃 max
𝑘∈𝑁𝑖

(−𝑎𝑖𝑘) , 𝜃 =
1

4
.

• Modified selection of strong connections:

• 𝑆𝑖 = 𝑗 | − sgn 𝑎𝑖𝑖𝐞𝑖 𝑎𝑖𝑗𝐞𝑗 ≥ 𝜃 max
𝑘∈𝑁𝑖

(− sgn 𝑎𝑖𝑖𝐞𝑖 𝑎𝑖𝑘𝐞𝑘) , 𝜃 =
1

4

• Additional requirement: 𝑎𝑖𝑖𝐞𝑖 𝑎𝑖𝑖𝐞𝑖 + σ𝑗∈𝑊𝑖
𝑎𝑖𝑗𝐞𝑗 > 0.

23



Application to MFD System

Mimetic finite difference scheme for anisotropic diffusion produces a system:

• Schur complement (B is diagonal):

• Requires multiplying and subtracting two matrices.

• S- suffix in the methods is the preconditioner applied to the Schur complement.

24



Application to MFD System

25Linear scaling! Sequential non-optimized code, time is for the reference.

Single well problem with 
anisotropic diffusion

(time in sec) (time in sec)
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Application to MFD System

26

Convergence rate  
depends on 𝜅
(optimal 𝜅 = 0.25)

Classical and adaptive
multigrid for scaled systems:

𝐴∗ = 𝐷𝐿𝐴𝐷𝑅
𝐴𝑠 – symmetric scaling
𝐴𝑤 – Sinkhorn scaling
𝐴𝑚 – maximum transversal
𝐴𝑟 – random scaling

Single well problem with 
anisotropic diffusion
2,241,216 unknowns
746,496 cells

(time in sec) (memory in MB)

(system with 3 904 281 unknowns)



Multistage Methods

Multistage strategies:

• Two stage – a way to combine multiple preconditioners and solve (AM-1)(Mx)=b with

• Two stage Gauss-Seidel – use Gauss-Seidel on 2 × 2 block matrix with individual 
preconditioner M1 and M2:

27



Multistage Methods

Multistage strategies:

• CPR – constrained pressure residual:

• Using black-oil problem structure, multiply from the left by a matrix to approximately decouple 
the pressure system:

• Use a two-stage method to solve the system.

• M1  - for pressure system, M2  - for either complete system or saturations system (two-stage GS).

28



Application to Two-Phase Problem

29
Almost linear scaling! Sequential code.

Quarter-five spot problem
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Time to solution vs problem size

Using CPR rescaling, 
AMG at pressure block, and 
block Gauss-Seidel at first stage
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Application to Two-Phase Problem

30
Adaptive multigrid is directly applied to the entire system!
(maybe we need more test vectors or block version)

Quarter-five spot problem

Using bootstrap adaptive AMG
on original system
Classic AMG not applicable
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Bramble-Pasciak method
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• Initial System:
𝐵 𝐹
𝐸 −𝐶

𝑥1

𝑥2
=

𝑓1

𝑓2
,

• Assumptions: 𝐵 > 0, 𝐶 ≥ 0, 𝐸 = 𝐹𝑇

• Modified System:
𝐵 − 𝑃−1

𝕀
𝕀
𝐸 −𝕀

𝑃
𝕀

𝐵 𝐹
𝐸 −𝐶

𝑥1

𝑥2
=

𝐵𝑃𝑓1 − 𝑓1

𝐸𝑃𝑓1 − 𝑓2

• Collapses into:

𝐵𝑃𝐵 − 𝐵 𝐵𝑃𝐹 − 𝐹
𝐸𝑃𝐵 − 𝐸 𝐶 + 𝐸𝑃𝐹

𝑥1

𝑥2
= 

𝐵𝑃𝑓1 − 𝑓1

𝐸𝑃𝑓1 − 𝑓2

• Do not require 𝑃−1, Krylov solver with multiplication by modified matrix, spd for CG if 𝑃 is 
properly scaled.

• Applicable with BiCGStab without 𝑃 scaling and to moderately non-symmetric systems.



Application to Stokes Problem

32

Staggered discretization: around 3 equations per cell.
Symmetric with 𝐶 = 0. ILU methods typically breakdown.
Linear scaling! Sequential code.

Lid-driven cavity problem
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Application to Navier-Stokes Problem

33

Lid-driven cavity problem

Newton iterations to steady-state. Non-symmetric with 𝐶 = 0.
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Block AMG
For general collocated finite-volume discretization: exactly follows Ruge-Stuben
scheme with blocks and uses block Gauss-Seidel smoother

34



Interpolation Method (Block version)

• Selection of strong connections:

𝑆𝑖 = 𝑗 | 𝑎𝑖𝑗 ≥ 𝜃 max
𝑘∈𝑁𝑖

( 𝑎𝑖𝑘 ) , 𝜃 =
1

4
.

• Interpolation (𝜅 = 0 ⇒ 𝐸𝑖 = ∅):

𝐞𝑖 = 

𝑗∈𝐼𝑖

𝝎𝑖𝑗 𝐞𝑗 , 𝝎𝑖𝑗 = − 𝒂𝑖𝑖 + 

𝑗∈𝑊𝑖

𝒂𝑖𝑗

−1

𝒂𝑖𝑗 + 

𝑘∈𝑇𝑖

𝒂𝑖𝑘 𝒂𝑘𝑗

σ𝑙∈𝑆𝑖∩𝑆𝑘∩𝐶 𝒂𝑘𝑙

• Prolongator:

𝑃𝑖 =


𝑗∈𝐼𝑖

𝝎𝑖𝑗𝛿𝑗 𝑖 ∈ 𝐹

𝕀𝛿𝑖 𝑖 ∈ 𝐶

• Coarse-space system:
𝐵 = 𝑃𝑇𝐴𝑃

35



General Concept for Differential Equations

System of PDE equations:
𝜕𝜏(𝑞)

𝜕𝑡
+ 𝐝𝐢𝐯 𝒜 𝑞 = ℛ 𝑞 ,

Where 

• 𝑞 is 𝑁 × 1 vector of unknowns of the system, 

• 𝜏(𝑞) corresponds to the accumulation, 

• ℛ 𝑞 represents body forces and reactions – discretized with matrix-weighted Euler method:

• I. Butakov, K. Terekhov. Two Methods for the Implicit Integration of Stiff Reaction Systems. CMAM, submitted.

• 𝒜 𝑞 represents conservative forces – addressed by the general finite volume framework:

• K.Terekhov. General finite-volume framework for saddle-point problems of various physics. RJNAMM, 2021

Ultimate goal: automatic collocated finite-volume discretization for a given system. 

Complications: inf-sup condition, convective instability and other problems…

We get a system with 𝑁 × 𝑁 blocks. At the core we get a symmetric quasi-definite system.
36
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• Gauss-Green theorem :

𝐝𝐢𝐯 𝒜 𝑞 = 𝑔 ⇒  ර

𝜕𝑉

 

𝒜 𝑞 𝑑𝑺 = න

𝑽

 

𝒈𝑑𝑉 ⇒  
1

𝑉


𝑓∈ℱ 𝑉

 

𝒜𝑓𝒏 𝑓 = 𝒈𝑉

• Requires flux approximation on a face:
𝒕 = 𝒜𝑓𝒏

• Which flux?
• 𝒜 = −𝜇−1 𝛻𝑝 − 𝜌𝑔𝛻𝑧 𝑇𝕂, (Darcy)

• 𝒜 = −𝒞: 𝐮𝛻𝑇 + 𝛻𝐮𝑇 /2, (elasticity)

• 𝒜 =  ൞
−𝒞:

𝐮𝛻𝑇+𝛻𝐮𝑇

2
+ 𝔹𝑝

−𝜇−1𝕂 𝛻𝑝 − 𝜌𝑔𝛻𝑧 + 𝔹
𝜕𝐮

𝜕𝑡

, (Biot)

• 𝒜 =  ቊ
𝜌𝐮𝐮𝑇 − 𝜇𝛻𝐮 + 𝕀𝑝

𝜌𝐮
 , (Navier-Stokes)

• 𝒜 =  ቊ
−𝑅 𝑯 ⊗ 𝕀
𝑅 𝑬 ⊗ 𝕀

, 𝑅 =
0 0 0
0 0 1
0 −1 0

0 0 −1
0 0 0
1 0 0

0 1 0
−1 0 0
0 0 0

, (Maxwell)

• 𝒞, 𝕂, 𝔹– piecewise-constant tensors with discontinuity at mesh faces. 

Collocated Finite Volume Method

37

𝑞

𝒏
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• Gauss-Green theorem:

𝐝𝐢𝐯 𝒜 𝑞 = 𝑔 ⇒  ර

𝜕𝑉

 

𝒜 𝑞 𝑑𝑺 = න

𝑽

 

𝒈𝑑𝑉 ⇒  
1

𝑉


𝑓∈ℱ 𝑉

 

𝒜𝑓𝒏 𝑓 = 𝒈𝑉

• General flux formula:
𝒕 = 𝒜𝑓𝒏 = 𝒜 𝑞𝑓 𝒏 = 𝑀 𝒏 𝑞𝑓 + 𝑊 𝒏 𝑞 ⊗ 𝛻 + 𝑅,

• Here

• 𝑞𝑓 - 𝑚 × 1 unknown vector at interface,

• 𝑞 ⊗ 𝛻 - 𝑚𝑑 × 1 gradient of unknown at cell center,

• 𝑀 𝒏 - 𝑚 × 𝑚 matrix of hyperbolic component,

• 𝑊 𝒏 - 𝑚 × 𝑚𝑑 matrix of elliptic component,

• 𝑅 - 𝑚 × 1 additional terms (gravity, previous time step, etc).

General Framework
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• General flux expression:
𝒕𝑖 = 𝑀𝑖𝑞𝑓𝑖

+ 𝑊𝑖 𝑞𝑖 ⊗ 𝛻 + 𝑅𝑖 .

• Condition with constraints 𝐶 (i.e. sliding) and condition 𝑭 (i.e. friction):

𝕀 − 𝐶 𝒕𝑖 = 𝑭, 𝐶𝑞𝑓1
= 𝐶𝑞𝑓2

.

• Decompositions:

• 𝑀𝑖 = 𝑀𝑖
+ + 𝑀𝑖

− - eigen-decomposition of the matrix,

• 𝑊𝑖 = Λ𝑖 𝕀 ⊗ 𝒏𝑇 + Γ𝑖 - normal projection,

• 𝑞𝑖 ⊗ 𝛻 ≈
1

𝑟𝑖
𝑞𝑓𝑖

− 𝑞𝑖 𝒏 + 𝕀 −
1

𝑟𝑖
𝒏 𝑥𝑓 − 𝑥𝑖

𝑇
𝑞𝑖 ⊗ 𝛻 .

• Assumption (unknown is piecewise-continuous):

• 𝕀 − 𝒏𝒏𝑇 𝑞1 ⊗ 𝛻 = 𝕀 − 𝒏𝒏𝑇 𝑞2 ⊗ 𝛻 = 𝐺𝜏.
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• General flux expression:
𝒕𝑖 = 𝑀𝑖𝑞𝑓𝑖

+ 𝑊𝑖 𝑞𝑖 ⊗ 𝛻 + 𝑅𝑖 .

• System of conditions:

r1
−1Λ1 + 𝑀1

+ −𝐶

r2
−1Λ2 − 𝑀2

− 𝐶

−𝐶 𝐶

𝑞𝑓1

𝑞𝑓2

𝒕
=

r1
−1Λ1 − 𝑀1

− 𝑞1

r2
−1Λ2 + 𝑀2

+ 𝑞2

−

𝑟1
−1Λ1 − 𝑀1

− ⊗ 𝒚1
𝑇 + 𝑀1 ⊗ 𝑥𝑓

𝑇 − 𝑟1
−1Λ1 + 𝑀1

+ 𝑋ℎ
𝑇 + Γ1

𝑟2
−1Λ2 + 𝑀1

+ ⊗ 𝒚2
𝑇 + 𝑀2 ⊗ 𝑥𝑓

𝑇 − 𝑟2
−1Λ2 − 𝑀2

− 𝑋ℎ
𝑇 − Γ2

𝐺𝜏

−

𝑟1𝑀1
− ⊗ 𝑛𝑇 𝑞1 ⊗ 𝛻 + 𝑅1

𝑟2𝑀2
∓ ⊗ 𝑛𝑇 𝑞2 ⊗ 𝛻 − 𝑅2
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• Solve the system:

• for 𝐶𝒕 to get the flux expression 𝒕 = 𝐶𝒕 + 𝑭.

• Two-point part and transversal correction.

• for 𝑞𝑓1
, 𝑞𝑓2

and tune 𝑋ℎ to eliminate 𝐺𝜏 to get the interpolation.

• Similar concept to obtain 𝑞𝑓 and the flux from the boundary 
conditions:

𝜶𝑞𝑓 + 𝜷𝑞 ⊗ 𝛻 = 𝜸

General Framework
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• System of reactions:
𝜕𝐱

𝜕𝑡
= 𝒓, → 𝑉𝑛+1 𝐱𝑛+1 − 𝑉𝑛 𝑥𝑛 = 𝑉 𝑡 𝑾𝒓𝑛+1 + (𝕀 − 𝑾)𝒓𝑛 ,

• where 𝑾 is a matrix, filtering eigenvalues in 𝑱 =
𝜕𝒓𝑛+1

𝜕𝐱𝑇 , and reproducing exponential integrator:

𝑾 = 𝜙
𝑉 𝑡

𝑉𝑛+1
𝑱 , 𝜙 𝑧 = 𝑧−1 − 𝑒𝑧 − 1 −1.

I.. Butakov and K. Terekhov Two Methods for 
the Implicit Integration of Stiff Reaction
Systems. Computational Methods in Applied 
Mathematics, 2022Lotka-Volterra system Van der Pol system
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Numerical experiments

44



Problem 1

Problem 1 (Ph2-z) Two-phase oil recovery problem (b = 2)

O-type multi-point flux approximation for water-oil flow.

Fully-implicit cell-centered finite-volume discretization method.

2D grids 16 × 16 × 1, 32 × 32 × 1, 64 × 64 × 1 with time steps 2.0, 1.0, 0.5 days.

At 13-th time step:  Ph2-z1, Ph2-z2, Ph2-z3.

where p is the water pressure and 𝑆𝑜 is the oil saturation with constraint 𝑆𝑤 + 𝑆𝑜 = 1.
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Problems 2-3

Problem 2 (Ph3-injg)  Three-phase black-oil recovery with gas injection (b = 3)

Water-oil-gas flow with two wells.

2D grids 16 × 16 × 1, 32 × 32 × 1, 64 × 64 × 1 with time steps 0.0008, 0.0004, 0.0002 days.

Problem 3 (Ph3-injw)  Three-phase black-oil recovery with water injection (b = 3)

Water-oil-gas flow with two wells.

2D grids 16 × 16 × 1, 32 × 32 × 1, 64 × 64 × 1 with time steps 0.002, 0.001, 0.0005 days.
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Problems 4-5

Problem 4 (Ccfv-sh, Ccfv-st, Ccfv-sd) Linear elasticity: beam under shear (b = 3)

Cell-centered finite-volume (Ccfv) method for the stationary heterogeneous anisotropic linear 
elasticity problem for compressible materials.

hex-grid: 4 × 4 × 20, 8 × 8 × 40, 16 × 16 × 80;  tet-grid: 4×4×20×6, 8 × 8 × 40 × 6, 16 × 16 × 80 × 64; 
dual-grid: 525, 3321, 23409

Problem 5 (Ccfv-th, Ccfv-tt, Ccfv-td) Linear elasticity: beam under torsion (b = 3)

Cell-centered finite-volume (Ccfv) method for the stationary heterogeneous anisotropic linear 
elasticity problem for compressible materials.

The same grids and equations.
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Problems 6

Problem 6 (NS-t)  Navier–Stokes flow in a tube (b = 4)

The Poiseuille flow through a cylindrical pipe with the prismatic mesh for a cylinder with       
radius 1/2 and length 5.

3D grids: 820, 5600, 40720 and time steps 1.0, 0.5, 0.25 sec.

for velocity  u and pressure  p, subject to appropriate boundary conditions.
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Problems 7-8

Problem 7 (Rigid-s) Stationary incompressible elasticity: beam under shear (b = 4)

As the incompressible linear elasticity problem we consider the equation for the elastic body 
equilibrium.

3D grid sizes:  8 × 8 × 20, 16 × 16 × 40, 32 × 32 × 80.

for displacement  u and structural pressure  p with the proper boundary conditions.

Problem 8 (Rigid-t) Stationary incompressible elasticity: beam under torsion (b = 3)

The same grids and equations.
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Problems 9-10

Problem 9 (Biot) Biot poroelasticity problem (b = 4)

Interaction between a compressible fluid and a compressible porous body in the absence of 
gravitational forces.

2D grids 22×22×1, 46×46×1, 94×94×1 with time steps 4, 2, 1 sec.

for displacement  u and fluid pressure  p with the proper boundary conditions.

Problem 10 (Poromech) Barry & Mercer poromechanics problem (b = 4)

Barry & Mercer test with pulsating source for the above Biot system of equations.

2D grids 22×22×1, 46×46×1, 94×94×1 with time steps 4, 2, 1 sec.

The linear system stored from the first time step.
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Problem 11

Problem 11 (Maxwell)  Non-stationary Maxwell problem (b = 6)

Maxwell equations for the interaction of electric and magnetic fields.

The bounded square cavity problem with the parameter k = 1/24 is considered.

3D grids 8 × 8 × 8, 16 × 16 × 16, 32 × 32 × 32 with time steps 0.04, 0.02, 0.01 sec.

for electric field  E and magnetic field  H with the proper boundary conditions.

51



Structural properties   [1/2]…
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Structural properties   …[2/2]

53



Block AMG on Saddle-Point Problems
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NS: analytical Pousielle solution in a pipe
rigid-s: analytical solution for rigid beam under shear
rigid-t: analytical solution for rigid beam under torsion

Almost linear scaling! 

(time in sec) (time in sec)



Block AMG on Saddle-Point Problems
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biot: Barry & Mercer analytical solution for pulsating source
maxwell: analytic solution for cavity bounded by perfect electric conductor

Almost linear scaling! 

(time in sec) (time in sec)



Block AMG on Block Elliptic Problems
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shear: analytical solution for elastic beam under share
tet, hex, dual: tetrahedral, hexahedral and dual meshes

Almost linear scaling! 
(time in sec) (time in sec)



Block AMG on Block Elliptic Problems
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torsion: analytical solution for elastic beam under torsion
tet, hex, dual: tetrahedral, hexahedral and dual meshes

Almost linear scaling! (time in sec) (time in sec)



Block AMG on Oil & Gas Systems
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twophase: oil recovery with water
threephase: black oil recovery
gas, water: gas or water are injected

Almost linear scaling! Black oil systems break down on phase switch: mixing gas 
saturation and bubble point pressure in interpolation.

(time in sec) (time in sec)



BAMG for 16 cores on INM RAS cluster
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Actual speedup of BAMG for Rigid-t3 problem
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MSU-L2 14-cores
MVS-10Q  2x16
CKP  2x16
INM  2x20
S-HPC  2x26
ARM  2x64



Procedure scalability over 40 processors
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solveP – smoother application
multAv – matrix-vector 
product
B=RAP – sparse matrix 
product
Oper – interpolation operator 
construction
bG – block matrix assembly
vec – vector operations 
(ddot,daxpy)



Future Works

62

• Tackle problems that block AMG can’t solve yet: 
• blood coagulation, mixed Darcy
• method breaks down if block weights become singular

• Support variable block size:
• fluid-structure interaction problems
• mixed physics problems

• Bootstrap adaptive version
• SVD to make positive definite diagonal: 𝐴𝑖𝑖 = 𝑈𝑆𝑉𝑇 → ҧ𝐴𝑖𝑖 = 𝑉𝑈𝑇𝐴𝑖𝑖

• Eigen-splitting to detect strong connections: 𝐴𝑖𝑘 = 𝐴𝑖𝑘
+ + 𝐴𝑖𝑘

− with 𝐴𝑖𝑘
+ ≥ 0

contributing to diagonal and 𝐴𝑖𝑘
− < 0 contributing to weight



Thank you for your attention

Contacts:

• Igor.Konshin@gmail.com

• Kirill.Terehov@gmail.com

Supported by:

Russian Science Foundation 21-71-20024

Parallel computations:

INM RAS,   FRC CSC RAS,   JSCC RAS,             
Lomonosov-2 MSU,      Sechenov Univ.


	Слайд 1, Block Algebraic Multigrid Method for saddle-point problems of various physics
	Слайд 2, INMOST
	Слайд 3
	Слайд 4, INMOST
	Слайд 5, INMOST Linear Solvers
	Слайд 6, References
	Слайд 7, Additive Schwarz Method
	Слайд 8, Doubly-Bordered Block-Diagonal Form 
	Слайд 9, Second-order Crout Incomplete LU
	Слайд 10, Schur Complement
	Слайд 11, Analogy to the Algebraic Multigrid
	Слайд 12, Oil & Gas: Black Oil
	Слайд 13, Oil & Gas: Geomechanics
	Слайд 14, Blood flow: Right Ventricle
	Слайд 15, Blood flow: Right Ventricle
	Слайд 16, AMG
	Слайд 17, Bootstrap Adaptive Algebraic Multigrid
	Слайд 18, References
	Слайд 19, Near Null-Space Vector
	Слайд 20, Space and Connections Splitting
	Слайд 21, Interpolation Method
	Слайд 22, Interpolation Method
	Слайд 23, Choosing Spaces
	Слайд 24, Application to MFD System
	Слайд 25, Application to MFD System
	Слайд 26, Application to MFD System
	Слайд 27, Multistage Methods
	Слайд 28, Multistage Methods
	Слайд 29, Application to Two-Phase Problem
	Слайд 30, Application to Two-Phase Problem
	Слайд 31, Bramble-Pasciak method
	Слайд 32, Application to Stokes Problem
	Слайд 33, Application to Navier-Stokes Problem
	Слайд 34, Block AMG
	Слайд 35, Interpolation Method (Block version)
	Слайд 36, General Concept for Differential Equations
	Слайд 37, Collocated Finite Volume Method
	Слайд 38, General Framework
	Слайд 39, General Framework
	Слайд 40, General Framework
	Слайд 41, General Framework
	Слайд 42, Reactions
	Слайд 43, Publications on FV
	Слайд 44, Numerical experiments
	Слайд 45, Problem 1
	Слайд 46, Problems 2-3
	Слайд 47, Problems 4-5
	Слайд 48, Problems 6
	Слайд 49, Problems 7-8
	Слайд 50, Problems 9-10
	Слайд 51, Problem 11
	Слайд 52, Structural properties   [1/2]…
	Слайд 53, Structural properties   …[2/2]
	Слайд 54, Block AMG on Saddle-Point Problems
	Слайд 55, Block AMG on Saddle-Point Problems
	Слайд 56, Block AMG on Block Elliptic Problems
	Слайд 57, Block AMG on Block Elliptic Problems
	Слайд 58, Block AMG on Oil & Gas Systems
	Слайд 59, BAMG for 16 cores on INM RAS cluster
	Слайд 60, Actual speedup of BAMG for Rigid-t3 problem
	Слайд 61, Procedure scalability over 40 processors
	Слайд 62, Future Works
	Слайд 63

