Block Algebraic Multigrid Method for saddle-point problems of various physics

Igor Konshin ${ }^{1,2,3,4,5}$, Kirill Terekhov ${ }^{\mathbf{1 , 3 , 5}}$

${ }^{1}$ Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences
${ }^{2}$ Dorodnicyn Computing Centre of the Russian Academy of Sciences
${ }^{3}$ Moscow Institute of Physics and Technology
${ }^{4}$ Sechenov University
${ }^{5}$ Sirius University

INMOST

Framework for mathematical modelling

Websites:

 www.inmost.org www.inmost.ruYuri Vassilevski Kirill Terekhov Kirill Nikitin Ivan Kapyrin

Parallel Finite

 Volume Computation on General MeshesMore then 20 articles

INMOST

INMOST (www.inmost.org, www.inmost.ru) is a short for:

Integrated
Numerical
Modeling and
Object-oriented
Supercomputing

- Distributed meshes (moving, adaptive)
- Distributed linear system assembly
- Parallel linear solvers
- Automatic differentiation
- Nonlinear system assembly
- Coupling of unknowns and models

Technologies
Contributors: Igor Konshin, Kirill Nikitin, Alexander Danilov, Ivan Kapyrin, Yuri Vassilevski, Alexei Chernyshenko (INM RAS, IBRAE RAS), Igor Kaporin (CMC RAS) Dmitri Bagaev, Andrei Burachkovski (MSU), Ruslan Yanbarisov, Alexei Logkiy, Sergei Petrov, Ivan Butakov (MIPT), Timur Garipov, Pavel Tomin, Christine Mayer (Stanford), Ahmad Abushaikha (HBKU), Longlong Li (IMCAS), et al

INMOST Linear Solvers

- Preconditioned BiCGStab(I) method ${ }^{1}$
- Preconditioner MPI-parallelization using Additive Schwarz Method
- Preconditioner OpenMP-parallelization using Bordered Block-Diagonal Form ${ }^{9,10}$
- Multi-level preconditioner based on the second-order Crout-ILU ${ }^{2,3}$
- Condition estimation of the inverse factors determines the coarse system and tunes dropping tolerances ${ }^{4,5}$
- Scaling and reordering of the local system on each successive level ${ }^{6,7,8}$

References

1) Sleijpen, G.L.G., Diederik R. F.: BiCGstab (I) for linear equations involving unsymmetric matrices with complex spectrum. Electronic Transactions on Numerical Analysis 1.11 (1993): 2000. (Krylov method)
2) Li N., Saad Y., Chow E.: Crout versions of ILU for general sparse matrices. SIAM Journal on Scientific Computing 25.2 (2003): 716728. (Crout-ILU)
3) Kaporin, I.E.: High quality preconditioning of a general symmetric positive definite matrix based on its UTU+ UTR+ RTUdecomposition. Numerical linear algebra with applications 5.6 (1998): 483-509. (Second-order ILU)
4) Bollhöfer, M.: A robust ILU with pivoting based on monitoring the growth of the inverse factors. Linear Algebra and its Applications 338.1-3 (2001): 201-218. (Tuning dropping tolerances)
5) Bollhöfer, M., Saad Y.: Multilevel preconditioners constructed from inverse-based ILUs. SIAM Journal on Scientific Computing 27.5 (2006): 1627-1650. (Computing coarse system)
6) Cuthill, E., McKee J.: Reducing the bandwidth of sparse symmetric matrices. Proceedings of the 1969 24th national conference. 1969. (Reordering for bandwidth reduction)
7) Olschowka, M., Arnold N.: A new pivoting strategy for Gaussian elimination. Linear Algebra and its Applications 240 (1996): 131151. (Maximizing diagonal product)
8) Kaporin, I.E.: Scaling, reordering, and diagonal pivoting in ILU preconditionings. Russian Journal of Numerical Analysis and Mathematical Modelling 22.4 (2007): 341-375. (Rescaling for condition reduction)
9) Grigori, L., Boman, E. G., Donfack, S., Davis, T. A: Hypergraph-based unsymmetric nested dissection ordering for sparse LU factorization. SIAM Journal on Scientific Computing, 32.6 (2010): 3426-3446. (Bordered block-diagonal form)
10) Duff, I. S., Scott, J. A.: Stabilized bordered block diagonal forms for parallel sparse solvers. Parallel Computing, 31.3-4 (2005): 275-289. (Bordered block-diagonal form)

Additive Schwarz Method

- Global matrix is composed of local blocks.
- Extend blocks to localize the connection.
- Restricted version.
- More iterations with more blocks

Distributed system

- Local partition outlier
\square - Remote partition outlier
- Local partition
- Remote partitions \#- Extended rows

Doubly-Bordered Block-Diagonal Form

First level

Larger Schur complement with more blocks

Schur complement

Second-order Crout Incomplete LU

- Dual-threshold dropping:
- $\boldsymbol{\tau}^{2}$ for factorization.
- τ for iterations.
- Running condition estimation:

L-factor elimination
$-\mathbf{K}=\max \left(| | L^{-1}| |,\left|\left|U^{-1}\right|\right|\right)$ Dense row accumulator:
Transposed matrix traversal:
$-\boldsymbol{\tau} / \mathbf{k}=$ const tuning.

- Limit growth of $\boldsymbol{\kappa}$.

Schur Complement

- Part that leads to growth of $\boldsymbol{\kappa}$ is accumulated in C:
- system reordering after factorization.
- Next level system is the Schur complement:
- $\mathbf{S}=\mathbf{C}-\mathbf{E}(\mathrm{DU})^{-1} \mathrm{D}(\mathrm{LD})^{-1} \mathbf{F}$.
- Requires forward and backward substitution with sparse right hand side.
- Fill-in control is critical.
- Second-order ILU is critical.

Computation of operators

Schur complement computation

Analogy to the Algebraic Multigrid

- Coarse system should contain the largest error of the smoother.
- Condition estimation reveals the error in the smoother and provides the coarse-fine splitting of the system.
- Ideal prolongation $\mathrm{P}=\left(-\mathrm{EB}^{-1}, \mathrm{I}\right)$ and restriction $\mathrm{R}=\left(-\mathrm{FB}^{-1}, \mathrm{I}\right)^{\top}$.
- (not satisfied by the present method).
- Schur complement corresponds to the coarse system.
- Universal but much more computationally complex.
- (definitely not linear computational complexity)

Oil \& Gas: Black Oil

- Suitable for large problem solutions:
- Black oil problem
- $\times 3$ unknowns per cell
- 100M and 200M cells (320 cores, INM RAS cluster):

Case	$T_{\text {mat }}$	prec$T_{\text {iter }}$	$T_{\text {sol }}$		$T_{\text {upd }}$	N_{n}	N_{l}
SPE10_100M	14	18.5	55.4	78.6	0.2	402	3.5
SPE10_200M	29.6	34.7	64.1	107.5	0.38	428	3.96

- Scaled up to 1B of cells on 9600 Cray cores by Ahmad Abushaika at HBKU, Qatar.
- Optimal preconditioner is Constrained pressure residual method with AMG.

Oil \& Gas: Geomechanics

- Poroelasticity:

$$
\begin{aligned}
\frac{1}{M} \frac{\partial p}{\partial t} & -\operatorname{div}\left(\mathbb{K}(\nabla p-\rho g \nabla z)-\mathbb{B} \frac{\partial \boldsymbol{u}}{\partial t}\right)=q \\
& -\operatorname{div}\left(\varepsilon: \frac{\nabla \boldsymbol{u}+\nabla \boldsymbol{u}^{\mathrm{T}}}{2}+\mathbb{B} p\right)=\rho g \nabla z
\end{aligned}
$$

- $\times 4$ unknowns per cell
- $\mathbf{1 . 2 M}$ cells (INM RAS cluster, Lomonosov):

Machine	$N_{\text {proc }}$	$T_{\text {tot }}$	$T_{\text {asm }}$	$T_{\text {prec }}$	$T_{\text {iter }}$	$T_{\text {upd }}$
	100	15079.4	1119.8	7245.2	4463	479.7
INM RAS cluster	200	8791.2	582.9	3926.2	2800.9	252.4
	400	4637	300.3	1965.6	1374.2	127
Lomonosov supercomputer	700	3536	234.1	1071.1	1112.42	70.5

Solution of saddle-point problem.
Optimal preconditioner: Fixed-stress splitting with AMG

Blood flow: Right Ventricle

Every step we adapt and balance the mesh, calculate geometry and recompute discretization coefficients, but the biggest challenge is the linear solution of the coupled saddle-point system.

Optimal preconditioner: GMG with Vanka smoother

Blood flow: Right Ventricle

450000	
350000	
300000	
200000	
150000	
100000	
5000	
0	
	Number of cells

Every step we adapt and balance the mesh, calculate geometry and recompute discretization coefficients, but the biggest challenge is the linear solution of the coupled saddle-point system.

AMG

Classical approaches to coupled problems: bootstrap adaptive AMG, AMG on Schur complement for mimetic finite difference method, constrained pressure residual and AMG for black oil problem, Bramble-Pasciak method with AMG for Stokes and Navier-Stokes

Bootstrap Adaptive Algebraic Multigrid

- Setup phase:
- Smoother or preconditioner setup.
- Near null-space approximation.
- Coarse-fine space splitting.
- Interpolation and restriction operators.
- Coarse space computation: matrixmatrix multiplication.
- Solve phase:
- Smoother application.

(illustration from internet)
- Matrix-vector multiplication.

References

1) Bakhvalov, Nikolai Sergeevich. On the convergence of a relaxation method with natural constraints on the elliptic operator. USSR Computational Mathematics and Mathematical Physics 6.5, 101--135 (1966)
2) Fedorenko, Radii Petrovich. Iterative Methods for Elliptic Difference Equations. Russian Mathematical Surveys 28, 129--195 (1973)
3) Brandt, A and McCormick, S and Ruge, J.: Algebraic multigrid (AMG) for automatic algorithm design and problem solution. Report,. Comp. Studies, Colorado State University, Ft. Collins (1982)
4) Ruge, John W and Stuben, Klaus.: Algebraic multigrid. Multigrid methods, SIAM, 73--130 (1987)
5) Brezina, Marian and Falgout, R and MacLachlan, Scott and Manteuffel, T and McCormick, S and Ruge, John. Adaptive algebraic multigrid. SIAM Journal on Scientific Computing 27.4, 1261--1286 (2006)
6) Brezina, Marian and Ketelsen, Christian and Manteuffel, T and McCormick, S and Park, Minho and Ruge, J. Relaxation-corrected bootstrap algebraic multigrid (rBAMG). Numerical Linear Algebra with Applications 19.2, 178--193 (2012)
7) Last year's RuScDays talk \& publication!
8) Wallis, John Richard, Richard P. Kendall, and T. E. Little. Constrained residual acceleration of conjugate residual methods. SPE (1985)
9) Bramble, James H., and Joseph E. Pasciak. A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems. Mathematics of Computation 50.181 (1988): 1-17.

Near Null-Space Vector

- Linear system: $A \mathbf{x}=\mathbf{b}$, where A is $N \times N$ matrix.
- Let $A \mathbf{e} \approx \mathbf{0}$, where vector \mathbf{e} is near null space of the system:

$$
a_{i i} \mathbf{e}_{i} \approx-\sum_{i \neq j} a_{i j} \mathbf{e}_{j}
$$

- For elliptic system the best guess is: $\mathbf{e}=\mathbf{1}$ - classical AMG.
- Adaptive multigrid: exploit information on \mathbf{e} for general systems.
- Bootstrap process: try to estimate \mathbf{e} with several iterations of the available smoother
(Ideal \mathbf{e} is an eigenvector corresponding to smallest eigenvalue - extremely expensive to find! Instead we search for error outside of smoother range)

Space and Connections Splitting

- Coarse-fine splitting of the grid elements: $\Omega=\{1, \ldots, N\}=C \cup F$.
- Connections of the element: $N_{i}=\left\{j \mid i \neq j, a_{i j} \neq 0\right\}$.
- Strong-weak splitting of connections: $N_{i}=S_{i} \cup W_{i}=I_{i} \cup T_{i} \cup E_{i} \cup W_{i}$.
- $I_{i}=S_{i} \cap \mathrm{C}$ - interpolatory connections.
- W_{i} - weak connections, absorbed by the diagonal coefficient.
- $T_{i} \cup E_{i}=S_{i} \cap F$ - strong non-interpolatory connections.
- T_{i} - twice-removed interpolation, requires $\forall j \in T_{i}: S_{i} \cap S_{j} \cap C \neq \emptyset$.
- E_{i} - absorbed by the coefficient, do not satisfy the condition.
- Ruge-Stuben rules for the coarse-fine splitting:
- $\forall i \in F: \forall j \in S_{i} \cap F: S_{i} \cap S_{j} \cup C \neq \emptyset$ (E_{i} is always empty)
- C is a maximal independent set in the graph of strong connections.

Interpolation Method

- Using introduced spaces:

$$
a_{i i} \mathbf{e}_{i} \approx-\sum_{i \neq j} a_{i j} \mathbf{e}_{j}=-\sum_{j \in I_{i}} a_{i j} \mathbf{e}_{j}-\sum_{j \in W_{i}} a_{i j} \mathbf{e}_{j}-\sum_{j \in T_{i}} a_{i k} \mathbf{e}_{k}-\sum_{j \in E_{i}} a_{i j} \mathbf{e}_{j}
$$

- Twice-removed interpolation for T_{i} :

$$
a_{i k} \mathbf{e}_{k} \approx-\sum_{j \in S_{i} \cap S_{k} \cap C} \frac{a_{i k} a_{k j} \mathbf{e}_{k} \mathbf{e}_{j}}{\sum_{l \in S_{i} \cap S_{k} \cap C} a_{k l} \mathbf{e}_{l}}
$$

- Now $A \mathbf{e} \approx \mathbf{0}$ turns into expression:

$$
\left(a_{i i}+\sum_{j \in W_{i}} a_{i j} \frac{\mathbf{e}_{j}}{\mathbf{e}_{i}}\right) \mathbf{e}_{i} \approx-\eta_{i} \sum_{j \in I_{i}}\left(a_{i j}+\sum_{k \in T_{i}} \frac{a_{i k} a_{k j} \mathbf{e}_{k}}{\sum_{l \in S_{i} \cap S_{k} \cap C} a_{k l} \mathbf{e}_{l}}\right) \mathbf{e}_{j}
$$

- Multiplying coefficient for E_{i} :

$$
\eta_{i}=\frac{\sum_{k \in S_{i}} a_{i k} \mathbf{e}_{k}}{\sum_{k \in S_{i} \backslash E_{i}} a_{i k} \mathbf{e}_{k}}
$$

Interpolation Method

- Interpolation:

$$
\mathbf{e}_{i}=\sum_{j \in I_{i}} \omega_{i j} \mathbf{e}_{j}
$$

- Weights:

$$
\omega_{i j}=\frac{-\eta_{i} \mathbf{e}_{i}}{a_{i i}+\sum_{j \in W_{i}} a_{i j} \mathbf{e}_{j}}\left(a_{i j}+\sum_{k \in T_{i}} \frac{a_{i k} a_{k j} \mathbf{e}_{k}}{\sum_{l \in S_{i} \cap S_{k} \cap C} a_{k l} \mathbf{e}_{l}}\right)
$$

- Prolongator:

$$
P_{i}=\left\{\begin{array}{cc}
\sum_{j \in I_{i}} \omega_{i j} \delta_{j} & i \in F \\
\delta_{i} & i \in C
\end{array}\right.
$$

- Coarse-space system:

$$
B=P^{T} A P
$$

Choosing Spaces

- Modification to the Ruge-Stuben coarse-fine splitting rules:
- $\forall i \in F:\left|\eta_{i}-1\right| \leq \kappa$, where κ is a tunable parameter.
- C is a maximal independent set in the graph of strong connections.
- Classical selection of strong connections by Ruge-Stuben:
- $S_{i}=\left\{j \mid-a_{i j} \geq \theta \max _{k \in N_{i}}\left(-a_{i k}\right)\right\}, \quad \theta=\frac{1}{4}$.
- Modified selection of strong connections:
- $S_{i}=\left\{j \mid-\operatorname{sgn}\left(a_{i i} \mathbf{e}_{i}\right) a_{i j} \mathbf{e}_{j} \geq \theta \max _{k \in N_{i}}\left(-\operatorname{sgn}\left(a_{i i} \mathbf{e}_{i}\right) a_{i k} \mathbf{e}_{k}\right)\right\}, \quad \theta=\frac{1}{4}$
- Additional requirement: $a_{i i} \mathbf{e}_{i}\left(a_{i i} \mathbf{e}_{i}+\sum_{j \in W_{i}} a_{i j} \mathbf{e}_{j}\right)>0$.

Application to MFD System

Mimetic finite difference scheme for anisotropic diffusion produces a system:

$$
A\left[\begin{array}{c}
p_{c} \\
p_{f}
\end{array}\right]=\left[\begin{array}{cc}
B & E \\
E^{T} & C
\end{array}\right]\left[\begin{array}{l}
p_{c} \\
p_{f}
\end{array}\right]=\left[\begin{array}{l}
q \\
0
\end{array}\right],
$$

- Schur complement (B is diagonal):

$$
S=C-E^{T} B^{-1} E
$$

- Requires multiplying and subtracting two matrices.
- S- suffix in the methods is the preconditioner applied to the Schur complement.

Application to MFD System

Cells System T, aAMG Lit, aAMG T, S-aAMG Lit, S-aAMG

Single well problem with anisotropic diffusion

Application to MFD System

kappa		T, aAMG	Lit, aAMG

Convergence rate depends on κ (optimal $\kappa=0.25$)

Single well problem with anisotropic diffusion 2,241,216 unknowns 746,496 cells

Classical and adaptive multigrid for scaled systems:
$A_{*}=D_{L} A D_{R}$
A_{s} - symmetric scaling
A_{w} - Sinkhorn scaling
A_{m} - maximum transversal
A_{r} - random scaling

	AMG				$\alpha \mathrm{AMG}$					
	A	A_{s}	A_{w}	A_{m}	A_{r}	A	A_{s}	A_{w}	A_{m}	A_{r}
T	363	54448.5	26040.4	-	1754.9	352	383.9	$\mathbf{3 2 8}$	596.2	492
Ts	20.6	25.5	25.2	20.5	20.5	31	33.4	33.4	34.6	31.5
Tit	342.4	54423	26065.7	-	1734.4	321.1	350.4	290.6	561.5	460.5
Nit	89	11581	5563	$>15000^{\mp}$	447	82	89	$\mathbf{7 6}$	143	115
Lvl	9	17	17	11	11	10	11	10	10	10
Mem	1.8 GB	2.3 GB	2.3 GB	1.8 GB	(system with 3904281 unknowns)					

Multistage Methods

Multistage strategies:

- Two stage - a wav to combine multiple preconditioners and solve $\left(A M^{-1}\right)(M x)=b$ with

$$
M^{-1}=M_{1}^{-1}+\sum_{i=2}^{n_{s t}} M_{i}^{-1} \prod_{j=1}^{i-1}\left(I-A M_{j}^{-1}\right)
$$

- Two stage Gauss-Seidel - use Gauss-Seidel on 2×2 block matrix with individual

$$
\begin{aligned}
& \text { preconditioner } M_{1} \text { and } M_{2} \text { : } \\
& \left.\left.\qquad \begin{array}{ll}
B & E \\
F & C
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right] \rightleftharpoons \begin{array}{l}
\tilde{x}_{1} \\
\tilde{x}_{2}
\end{array}\right]=\left[\begin{array}{ll}
B & {\left[\begin{array}{l}
-1 \\
F
\end{array}\right]^{-1}\left(\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]-\left[\begin{array}{cc}
0 & E \\
& 0
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right),} \\
{\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{cc}
B & E \\
C
\end{array}\right]^{-1}\left(\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]-\left[\begin{array}{ll}
0 & 0 \\
F & 0
\end{array}\right] \cdot\left[\begin{array}{l}
\tilde{x}_{1} \\
\tilde{x}_{2}
\end{array}\right]\right) .} \\
\tilde{x}_{1}=M_{1}^{-1}\left(b_{1}-E x_{2}\right), \quad x_{2}=M_{2}^{-1}\left(b_{2}-F \tilde{x}_{1}\right), \quad x_{1}=M_{1}^{-1}\left(b_{1}-E x_{2}\right) .
\end{array}\right.
\end{aligned}
$$

Multistage Methods

Multistage strategies:

- CPR - constrained pressure residual:
- Using black-oil problem structure, multiply from the left by a matrix to approximately decouple the pressure system:
$\left[\begin{array}{cc}A_{p p} & A_{p s} \\ A_{s p} & A_{s s}\end{array}\right] \cdot\left[\begin{array}{l}p \\ s\end{array}\right]=\left[\begin{array}{l}b_{p} \\ b_{s}\end{array}\right] . \breve{\breve{l l}}\left[\begin{array}{c}B_{p p} \\ Z_{p s} \\ A_{s p}\end{array} A_{s s} .\left[\begin{array}{c}p \\ s\end{array}\right]=\left[\begin{array}{c}b_{p}-D_{p s} D_{s s}^{-1} b_{s} \\ b_{s}\end{array}\right] \begin{array}{l}B_{p p} \equiv A_{p p}-D_{p s} D_{s s}^{-1} A_{p s} \\ Z_{p s} \equiv A_{p s}-D_{p s} D_{s s}^{-1} A_{s s} \approx 0\end{array}\right.$
- Use a two-stage method to solve the system.
- M_{1} - for pressure system, M_{2} - for either complete system or saturations system (two-stage GS).

Application to Two-Phase Problem

Using CPR rescaling, AMG at pressure block, and block Gauss-Seidel at first stage

Cells	T (sec)
1600	0,173
6400	0,248
25600	0,354
102400	0,961
409600	3,691
1638400	16,376
6553600	65,404
26214400	265,432

Almost linear scaling! Sequential code.

Linear iterations vs problem size

Quarter-five spot problem
Time to solution vs problem size

Application to Two-Phase Problem

Using bootstrap adaptive AMG on original system
Classic AMG not applicable

Cells	T (sec)	Lit
1600	0,242	16
6400	0,368	20
25600	1,124	33
102400	6,591	60
409600	57,441	136
1638400	472,973	277
6553600	4922,85	685

Time to solution vs problem size

Number of iterations vs problem size

Adaptive multigrid is directly applied to the entire system! (maybe we need more test vectors or block version)

Bramble-Pasciak method

- Initial System:

$$
\left[\begin{array}{cc}
B & F \\
E & -C
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
f_{1} \\
f_{2}
\end{array}\right]
$$

- Assumptions: $B>0, C \geq 0, E=F^{T}$
- Modified System:

$$
\left[\begin{array}{cc}
B-P^{-1} & \\
& \mathbb{I}
\end{array}\right]\left[\begin{array}{cc}
\mathbb{I} & \\
E & -\mathbb{I}
\end{array}\right]\left[\begin{array}{cc}
P & \\
& \mathbb{I}
\end{array}\right]\left[\begin{array}{cc}
B & F \\
E & -C
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
B P f_{1}-f_{1} \\
E P f_{1}-f_{2}
\end{array}\right]
$$

- Collapses into:

$$
\left[\begin{array}{cc}
B P B-B & B P F-F \\
E P B-E & C+E P F
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
B P f_{1}-f_{1} \\
E P f_{1}-f_{2}
\end{array}\right]
$$

- Do not require P^{-1}, Krylov solver with multiplication by modified matrix, spd for CG if P is properly scaled.
- Applicable with BiCGStab without P scaling and to moderately non-symmetric systems.

Application to Stokes Problem

Linear iterations vs problem
size

Time to solution vs problem size

Application to Navier-Stokes Problem

$\rightarrow-\mathrm{T}, \mathrm{Re}=50 \rightarrow-\mathrm{T}, \mathrm{Re}=100$
Lid-driven cavity problem
Newton iterations to steady-state. Non-symmetric with $C=0$.

Cells	Lit, $\mathrm{Re}=50$	Lit, $\mathrm{Re}=100$	Nit, $\mathrm{Re}=50$	Nit, $\mathrm{Re}=100$	T, $\mathrm{Re}=50$	T, $\mathrm{Re}=100$
1600	111	225	3	4	0,462	0,814
6400	109	175	3	3	1,192	1,858
25600	117	173	3	3	4,418	6,578
102400	78	181	2	3	11,596	27,4
409600	84	203	2	3	50,956	123,725
1638400	103	140	2	2	243,345	329,94
6553600	103	158	2	2	1011,053	1534,724
					(time in sec)	

Block AMG

For general collocated finite-volume discretization: exactly follows Ruge-Stuben scheme with blocks and uses block Gauss-Seidel smoother

Interpolation Method (Block version)

- Selection of strong connections:

$$
S_{i}=\left\{j \mid\left\|a_{i j}\right\| \geq \theta \max _{k \in N_{i}}\left(\left\|a_{i k}\right\|\right)\right\}, \quad \theta=\frac{1}{4}
$$

- Interpolation $\left(\kappa=0 \Rightarrow E_{i}=\varnothing\right.$):

$$
\mathbf{e}_{i}=\sum_{j \in I_{i}} \boldsymbol{\omega}_{i j} \mathbf{e}_{j}, \quad \boldsymbol{\omega}_{i j}=-\left(\boldsymbol{a}_{i i}+\sum_{j \in W_{i}} a_{i j}\right)^{-1}\left(\boldsymbol{a}_{i j}+\sum_{k \in T_{i}} \frac{\boldsymbol{a}_{i k}\left\|\boldsymbol{a}_{k j}\right\|}{\sum_{l \in S_{i} \cap S_{k} \cap}\left\|\boldsymbol{a}_{k l}\right\|}\right)
$$

- Prolongator:

$$
P_{i}=\left\{\begin{array}{cc}
\sum_{j \in I_{i}} \boldsymbol{\omega}_{i j} \delta_{j} & i \in F \\
\mathbb{I} \delta_{i} & i \in C
\end{array}\right.
$$

- Coarse-space system:

$$
B=P^{T} A P
$$

System of PDE equations:

$$
\frac{\partial \tau(q)}{\partial t}+\operatorname{div}(\mathcal{A}(q))=\mathcal{R}(q)
$$

Where

- q is $N \times 1$ vector of unknowns of the system,
- $\tau(q)$ corresponds to the accumulation,
- $\mathcal{R}(q)$ represents body forces and reactions - discretized with matrix-weighted Euler method:
- I. Butakov, K. Terekhov. Two Methods for the Implicit Integration of Stiff Reaction Systems. CMAM, submitted.
- $\mathcal{A}(q)$ represents conservative forces - addressed by the general finite volume framework:
- K.Terekhov. General finite-volume framework for saddle-point problems of various physics. RJNAMM, 2021

Ultimate goal: automatic collocated finite-volume discretization for a given system.
Complications: inf-sup condition, convective instability and other problems...
We get a system with $N \times N$ blocks. At the core we get a symmetric quasi-definite system.

Collocated Finite Volume Method

- Gauss-Green theorem :

$$
\operatorname{div}(\mathcal{A}(q))=g \Rightarrow \oint_{\partial V} \mathcal{A}(q) d \boldsymbol{S}=\int_{V} \boldsymbol{g} d V \Rightarrow \frac{1}{|V|} \sum_{f \in \mathcal{F}(V)} \mathcal{A}_{f} \boldsymbol{n}|f|=\boldsymbol{g}_{V}
$$

- Requires flux approximation on a face:

$$
\boldsymbol{t}=\mathcal{A}_{f} \boldsymbol{n}
$$

- Which flux?
- $\mathcal{A}=-\mu^{-1}(\nabla p-\rho g \nabla z)^{T} \mathbb{K}$,
(Darcy)
- $\mathcal{A}=-\mathcal{C}:\left(\mathbf{u} \nabla^{T}+\nabla \mathbf{u}^{T}\right) / 2$,
$\cdot \mathcal{A}=\left\{\begin{array}{c}-\mathcal{C}: \frac{\mathbf{u} \nabla^{T}+\nabla \mathbf{u}^{T}}{2}+\mathbb{B} p \\ -\mu^{-1} \mathbb{K}(\nabla p-\rho g \nabla z)+\mathbb{B} \frac{\partial \mathbf{u}}{\partial t}\end{array}\right.$,
- $\mathcal{A}=\left\{\begin{array}{c}\rho \mathbf{u u}^{T}-\mu \nabla \mathbf{u}+\mathbb{I} p \\ \rho \mathbf{u}\end{array}\right.$,
(Navier-Stokes)
- $\mathcal{A}=\left\{\begin{array}{c}-R(\boldsymbol{H} \otimes \mathbb{I}) \\ R(\boldsymbol{E} \otimes \mathbb{I})\end{array}, R=\left[\begin{array}{ccccccccc}0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 & 0\end{array}\right]\right.$, (Maxwell)
- $\mathcal{C}, \mathbb{K}, \mathbb{B}$ - piecewise-constant tensors with discontinuity at mesh faces.

General Framework

- Gauss-Green theorem:

$$
\operatorname{div}(\mathcal{A}(q))=g \Rightarrow \oint_{\partial V} \mathcal{A}(q) d S=\int_{V} \boldsymbol{g} d V \Rightarrow \frac{1}{|V|} \sum_{f \in \mathcal{F}(V)} \mathcal{A}_{f} \boldsymbol{n}|f|=\boldsymbol{g}_{V}
$$

- General flux formula:

$$
\boldsymbol{t}=\mathcal{A}_{f} \boldsymbol{n}=\mathcal{A}\left(q_{f}\right) \boldsymbol{n}=M(\boldsymbol{n}) q_{f}+W(\boldsymbol{n})(q \otimes \nabla)+R,
$$

- Here
- $q_{f}-m \times 1$ unknown vector at interface,
- $(q \otimes \nabla)-m d \times 1$ gradient of unknown at cell center,
- $M(\boldsymbol{n})-m \times m$ matrix of hyperbolic component,
- $W(n)-m \times m d$ matrix of elliptic component,

- $R-m \times 1$ additional terms (gravity, previous time step, etc).

General Framework

- General flux expression:

$$
\boldsymbol{t}_{i}=M_{i} q_{f_{i}}+W_{i}\left(q_{i} \otimes \nabla\right)+R_{i}
$$

- Condition with constraints C (i.e. sliding) and condition \boldsymbol{F} (i.e. friction):

$$
(\mathbb{I}-C) \boldsymbol{t}_{i}=\boldsymbol{F}, \quad C q_{f_{1}}=C q_{f_{2}}
$$

- Decompositions:
- $M_{i}=M_{i}^{+}+M_{i}^{-}$- eigen-decomposition of the matrix,
- $W_{i}=\Lambda_{i}\left(\mathbb{I} \otimes \boldsymbol{n}^{T}\right)+\Gamma_{i}$ - normal projection,
- $\left(q_{i} \otimes \nabla\right) \approx \frac{1}{r_{i}}\left(q_{f_{i}}-q_{i}\right) \boldsymbol{n}+\left(\mathbb{I}-\frac{1}{r_{i}} \boldsymbol{n}\left(x_{f}-x_{i}\right)^{T}\right)\left(q_{i} \otimes \nabla\right)$.
- Assumption (unknown is piecewise-continuous):
- $\left(\mathbb{I}-\boldsymbol{n} \boldsymbol{n}^{T}\right)\left(q_{1} \otimes \nabla\right)=\left(\mathbb{I}-\boldsymbol{n} \boldsymbol{n}^{T}\right)\left(q_{2} \otimes \nabla\right)=G_{\tau}$.

General Framework

- General flux expression:

$$
\boldsymbol{t}_{i}=M_{i} q_{f_{i}}+W_{i}\left(q_{i} \otimes \nabla\right)+R_{i} .
$$

- System of conditions:

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
\mathrm{r}_{1}^{-1} \Lambda_{1}+M_{1}^{+} & -C \\
-C & \mathrm{r}_{2}^{-1} \Lambda_{2}-M_{2}^{-} & C
\end{array}\right]\left[\begin{array}{c}
q_{f_{1}} \\
q_{f_{2}} \\
\boldsymbol{t}
\end{array}\right]=\left[\begin{array}{l}
\left(\mathrm{r}_{1}^{-1} \Lambda_{1}-M_{1}^{-}\right) q_{1} \\
\left(\mathrm{r}_{2}^{-1} \Lambda_{2}+M_{2}^{+}\right) q_{2}
\end{array}\right]} \\
& -\left[\begin{array}{c}
\left(r_{1}^{-1} \Lambda_{1}-M_{1}^{-}\right) \otimes \boldsymbol{y}_{1}^{T}+M_{1} \otimes x_{f}^{T}-\left(r_{1}^{-1} \Lambda_{1}+M_{1}^{+}\right) X_{h}^{T}+\Gamma_{1} \\
\left(r_{2}^{-1} \Lambda_{2}+M_{1}^{+}\right) \otimes \boldsymbol{y}_{2}^{T}+M_{2} \otimes x_{f}^{T}-\left(r_{2}^{-1} \Lambda_{2}-M_{2}^{-}\right) X_{h}^{T}-\Gamma_{2}
\end{array}\right] G_{\tau} \\
& -\left[\begin{array}{l}
r_{1} M_{1}^{-} \otimes n^{T}\left(q_{1} \otimes \nabla\right)+R_{1} \\
r_{2} M_{2}^{\mp} \otimes n^{T}\left(q_{2} \otimes \nabla\right)-R_{2}
\end{array}\right]
\end{aligned}
$$

General Framework

- Solve the system:
- for $\boldsymbol{C} \boldsymbol{t}$ to get the flux expression $\boldsymbol{t}=\boldsymbol{C} \boldsymbol{t}+\boldsymbol{F}$.
- Two-point part and transversal correction.
- for $q_{f_{1}}, q_{f_{2}}$ and tune X_{h} to eliminate G_{τ} to get the interpolation.
- Similar concept to obtain q_{f} and the flux from the boundary conditions:

$$
\boldsymbol{\alpha} q_{f}+\boldsymbol{\beta} q \otimes \nabla=\boldsymbol{\gamma}
$$

Reactions

- System of reactions:

$$
\frac{\partial \mathbf{x}}{\partial t}=\boldsymbol{r}, \rightarrow\left|V^{n+1}\right| \mathbf{x}^{n+1}-\left|V^{n}\right| x^{n}=|V(t)|\left(\boldsymbol{W} \boldsymbol{r}^{n+1}+(\mathbb{I}-\boldsymbol{W}) \boldsymbol{r}^{n}\right)
$$

- where \boldsymbol{W} is a matrix, filtering eigenvalues in $\boldsymbol{J}=\frac{\partial r^{n+1}}{\partial \mathbf{x}^{T}}$, and reproducing exponential integrator:

$$
\boldsymbol{W}=\phi\left(\frac{|V(t)|}{\left|V^{n+1}\right|} J\right), \quad \phi(z)=z^{-1}-\left(e^{z}-1\right)^{-1}
$$

I.. Butakov and K. Terekhov Two Methods for the Implicit Integration of Stiff Reaction Systems. Computational Methods in Applied Mathematics, 2022

Publications on FV

- K. Terekhov, B. Mallison, and H. Tchelepi. Cell-centered nonlinear finite-volume methods for the heterogeneous anisotropic diffusion problem. Journal of Computational Physics, 2017.
- K. Terekhov, and Yu. Vassilevski. Finite volume method for coupled subsurface flow problems, I: Darcy problem. Journal of Computational Physics, 2019
- K. Terekhov, and H. Tchelepi. Cell-centered finite-volume method for elastic deformation of heterogeneous media with full-tensor properties. Journal of Computational and Applied Mathematics, 2020
- K. Terekhov. Cell-centered finite-volume method for heterogeneous anisotropic poromechanics problem. Journal of Computational and Applied Mathematics, 2020
- K. Terekhov. Collocated Finite-Volume Method for the Incompressible Navier-Stokes Problem, Journal of Numerical Mathematics, 2020
- Yu. Vassilevski, K. Terekhov, K. Nikitin, I. Kapyrin. Parallel finite volume computation on general meshes, Springer Book, 2020
- K. Terekhov. Multi-physics flux coupling for hydraulic fracturing modelling within INMOST platform. Russian Journal of Numerical Analysis and Mathematical Modelling, 2020
- K. Terekhov. Fully-Implicit Collocated Finite-Volume Method for the Unsteady Incompressible Navier-Stokes Problem, Lecture Notes in Computational Science and Engineering, 2021
- K. Terekhov, and Yu. Vassilevski. Finite volume method for coupled subsurface flow problems, II: Poroelasticity. Journal of Computational Physics, 2022
- K. Terekhov Pressure boundary conditions in the collocated finite-volume method for the steady Navier-Stokes equations. Computational Mathematics and Mathematical Physics, 2022
- I.. Butakov and K. Terekhov Two Methods for the Implicit Integration of Stiff Reaction Systems. Computational Methods in Applied Mathematics, 2022
- K. Terekhov, I. Butakov., A. Danilov, Yu. Vassilevski, Dynamic adaptive moving mesh finite-volume method for the blood flow and coagulation modeling. International Journal for Numerical Methods in Biomedical Engineering, e3731, 2023
- K. Terekhov. General finite-volume framework for saddle-point problems of various physics. Russian Journal of Numerical Analysis and Mathematical Modelling, 2021
- We consider problems from this work

Numerical experiments

Problem 1

Problem 1 (Ph2-z) Two-phase oil recovery problem ($\mathbf{b}=2$)
O-type multi-point flux approximation for water-oil flow.
Fully-implicit cell-centered finite-volume discretization method.
2 D grids $16 \times 16 \times 1,32 \times 32 \times 1,64 \times 64 \times 1$ with time steps $2.0,1.0,0.5$ days.
At $13-$ th time step: Ph2-z1, Ph2-z2, Ph2-z3.

$$
\partial_{t}\left(\phi(p) \rho_{\alpha}(p) S_{\alpha}\right)-\operatorname{div}\left(\rho_{\alpha}(p) k_{r \alpha}\left(S_{\alpha}\right) \mu_{\alpha}(p)^{-1} \mathbb{K} \nabla p\right)=q_{\alpha}, \quad \alpha=w, o
$$

where p is the water pressure and S_{o} is the oil saturation with constraint $S_{w}+S_{o}=1$.

Problems 2-3

Problem 2 (Ph3-injg) Three-phase black-oil recovery with gas injection (b=3)
Water-oil-gas flow with two wells.
2 D grids $16 \times 16 \times 1,32 \times 32 \times 1,64 \times 64 \times 1$ with time steps $0.0008,0.0004,0.0002$ days.

$$
\begin{aligned}
& \partial_{t}\left(\phi(p) \rho_{\alpha}(p) S_{\alpha}\right)-\operatorname{div}\left(\rho_{\alpha}(p) k_{r \alpha}\left(S_{\alpha}\right) \mu_{\alpha}(p)^{-1} \mathbb{K} \nabla p\right)=q_{\alpha}, \quad \alpha=w, o \\
& \partial_{t}\left(\phi \rho_{g} S_{g}+\phi R_{s} \rho_{o g} S_{o}\right)-\operatorname{div}\left(\left(\rho_{g} k_{r g} \mu_{g}^{-1}+R_{s} \rho_{o g} k_{r o} \mu_{o}^{-1}\right) \mathbb{K} \nabla p\right)=q_{g}
\end{aligned}
$$

Problem 3 (Ph3-injw) Three-phase black-oil recovery with water injection (b=3)
Water-oil-gas flow with two wells.
2 D grids $16 \times 16 \times 1,32 \times 32 \times 1,64 \times 64 \times 1$ with time steps $0.002,0.001,0.0005$ days.

Problems 4-5

Problem 4 (Ccfv-sh, Ccfv-st, Ccfv-sd) Linear elasticity: beam under shear ($\mathbf{b}=3$)
Cell-centered finite-volume (Ccfv) method for the stationary heterogeneous anisotropic linear elasticity problem for compressible materials.
hex-grid: $4 \times 4 \times 20,8 \times 8 \times 40,16 \times 16 \times 80$; tet-grid: $4 \times 4 \times 20 \times 6,8 \times 8 \times 40 \times 6,16 \times 16 \times 80 \times 64$; dual-grid: 525, 3321, 23409

$$
-\operatorname{div}(\mathbf{C}: \boldsymbol{\epsilon})=\mathbf{b}, \quad \boldsymbol{\epsilon}=\frac{\mathbf{u} \nabla^{T}+\nabla \mathbf{u}^{T}}{2}
$$

Problem 5 (Ccfv-th, Ccfv-tt, Ccfv-td) Linear elasticity: beam under torsion ($\mathbf{b}=3$)
Cell-centered finite-volume (Ccfv) method for the stationary heterogeneous anisotropic linear elasticity problem for compressible materials.

The same grids and equations.

Problems 6

Problem 6 (NS-t) Navier-Stokes flow in a tube $(\mathbf{b}=4)$
The Poiseuille flow through a cylindrical pipe with the prismatic mesh for a cylinder with radius $1 / 2$ and length 5 .

3D grids: 820, 5600, 40720 and time steps $1.0,0.5,0.25 \mathrm{sec}$.

$$
\partial_{t} \rho \mathbf{u}+\operatorname{div}\left(\rho \mathbf{u} \mathbf{u}^{T}-\mu \nabla \mathbf{u}+\mathbb{I} p\right)=\mathbf{0}, \quad \operatorname{div}(\mathbf{u})=0
$$

for velocity \mathbf{u} and pressure p, subject to appropriate boundary conditions.

Problems 7-8

Problem 7 (Rigid-s) Stationary incompressible elasticity: beam under shear ($\mathbf{b}=4$)
As the incompressible linear elasticity problem we consider the equation for the elastic body equilibrium.

3 grid sizes: $8 \times 8 \times 20,16 \times 16 \times 40,32 \times 32 \times 80$.

$$
-\operatorname{div}(\boldsymbol{\sigma}-\mathbb{I} p)=\mathbf{g}, \quad K^{-1} p+\operatorname{div}(\mathbf{u})=0, \quad \mathbf{S}: \boldsymbol{\sigma}=\frac{\mathbf{u} \nabla^{T}+\nabla \mathbf{u}^{T}}{2}
$$

for displacement \mathbf{u} and structural pressure p with the proper boundary conditions.

Problem 8 (Rigid-t) Stationary incompressible elasticity: beam under torsion ($\mathbf{b}=3$)
The same grids and equations.

Problems 9-10

Problem 9 (Biot) Biot poroelasticity problem (b=4)
Interaction between a compressible fluid and a compressible porous body in the absence of gravitational forces.

2 D grids $22 \times 22 \times 1,46 \times 46 \times 1,94 \times 94 \times 1$ with time steps $4,2,1$ sec.

$$
-\operatorname{div}(\mathbf{C}: \boldsymbol{\epsilon}-B p)=\mathbf{g}, \quad M^{-1} \partial_{t} p+B: \partial_{t} \boldsymbol{\epsilon}-\operatorname{div}\left(\mu^{-1} \mathbb{K} \nabla p\right)=q
$$

for displacement \mathbf{u} and fluid pressure p with the proper boundary conditions.

Problem 10 (Poromech) Barry \& Mercer poromechanics problem (b=4)
Barry \& Mercer test with pulsating source for the above Biot system of equations.
2 D grids $22 \times 22 \times 1,46 \times 46 \times 1,94 \times 94 \times 1$ with time steps $4,2,1 \mathrm{sec}$.
The linear system stored from the first time step.

Problem 11

Problem 11 (Maxwell) Non-stationary Maxwell problem ($\mathbf{b}=6$)
Maxwell equations for the interaction of electric and magnetic fields.
The bounded square cavity problem with the parameter $k=1 / 24$ is considered.
3 grids $8 \times 8 \times 8,16 \times 16 \times 16,32 \times 32 \times 32$ with time steps $0.04,0.02,0.01 \mathrm{sec}$.

$$
\partial_{t} \boldsymbol{\epsilon} \mathbf{E}+\boldsymbol{\sigma} \mathbf{E}=\nabla \times \mathbf{H}-\mathbf{I}, \quad \partial_{t} \boldsymbol{\mu} \mathbf{H}=-\nabla \times \mathbf{E}
$$

for electric field \mathbf{E} and magnetic field \mathbf{H} with the proper boundary conditions.

Structural properties

[1/2]..

Problem	\mathfrak{b}	N	Nnd	Nnz	Nzr	Description
Ph2-z1	2	512	0	3695	7.2	Two-phase oil recovery problem
Ph2-z2	2	2048	0	12576	6.1	
Ph2-z3	2	8192	0	46427	5.6	
Ph3-injg1	3	768	512	10344	13.4	Three-phase black-oil recovery
Ph3-injg2	3	3072	2048	42702	13.9	(gas injection)
Ph3-injg3	3	12288	8192	173454	14.1	
Ph3-injw1	3	768	502	10308	13.4	Three-phase black-oil recovery
Ph3-injw2	3	3072	2032	42652	13.8	(water injection)
Ph3-injw3	3	12288	8162	173330	14.1	
Ccfv-sd1	3	1575	0	55053	34.9	Beam under shear (dual)
Ccfv-sd2	3	9963	0	391473	39.2	
Ccfv-sd3	3	70227	0	2945241	41.9	
Ccfv-sh1	3	960	0	35127	36.5	Beam under shear (hex)
Ccfv-sh2	3	7680	0	291739	37.9	
Ccfv-sh3	3	61440	0	2336498	38.0	
Ccfv-st1	3	5760	0	222144	38.5	Beam under shear (tet)
Ccfv-st2	3	46080	0	1922481	41.7	
Ccfv-st3	3	36840	0	15977699	43.3	
Ccfv-td1	3	1575	0	55053	34.9	Beam under torsion (dual)
Ccfv-td2	3	9963	0	391473	39.2	
Ccfv-td3	3	70227	0	2945241	41.9	

Structural properties

Problem	\mathfrak{b}	N	Nnd	Nnz	Nzr	Description
Ccfv-th1	3	960	0	35012	36.4	Beam under torsion (hex)
Ccfv-th2	3	7680	0	291997	38.0	
Ccfv-th3	3	61440	0	2335467	38.0	
Ccfv-tt1	3	5760	0	222145	38.5	Beam under torsion (tet)
Ccfv-tt2	3	46080	0	1922484	41.7	
Ccfv-tt3	3	368640	0	15977695	43.3	
NS-t1	4	11040	0	1709692	154.8	Navier-Stokes flow in a tube
NS-t2	4	80640	0	13248296	164.2	
NS-t3	4	614400	0	97042502	157.9	
Rigid-s1	4	5120	0	190022	37.1	Incompressible elasticity
Rigid-s2	4	40960	0	1319887	32.2	(beam under shear)
Rigid-s3	4	327680	0	9799749	29.9	
Rigid-t1	4	5120	0	190058	37.1	Incompressible elasticity
Rigid-t2	4	40960	0	1319758	32.2	(beam under torsion)
Rigid-t3	4	327680	0	9799179	29.9	
Biot1	4	1936	0	38246	19.7	Biot poroelasticity problem
Biot2	4	8464	0	167070	19.7	
Biot3	4	35344	0	791236	22.3	
Poromech1 4	1936	0	47175	24.3	Barry \& Mercer poromechanics	
Poromech2	4	8464	0	209244	24.7	
Poromech3	4	35344	0	930623	26.3	
Maxwell1	6	3072	0	59136	19.2	Non-stationary Maxwell problem
Maxwell2	6	24576	0	519168	21.1	
Maxwell3	6	196608	0	4337664	22.0	

Block AMG on Saddle-Point Problems

NS: analytical Pousielle solution in a pipe rigid-s: analytical solution for rigid beam under shear rigid-t: analytical solution for rigid beam under torsion

Problem	Size	Block GS, T	Block GS, Nit	Block AMG, T	AMG, Nit	Block Size
NS-1	11040	0,581	64	1,089	5	4
NS-2	80640	3,127	133	3,262	4	4
NS-3	614400	38,044	270	20,6	6	4
rigid-s-1	5120		-	1,196	30	4
rigid-s-2	40960		-	2,552	42	4
rigid-s-3	327680		-	16,614	58	4
rigid-t-1	5120		-	0,883	29	4
rigid-t-2	40960 -		-	2,657	44	4
rigid-t-3	327680		-	16,314	62	4
(time in sec)			(time in sec)			

Almost linear scaling!

Block AMG on Saddle-Point Problems

biot: Barry \& Mercer analytical solution for pulsating source maxwell: analytic solution for cavity bounded by perfect electric conductor

Block AMG on Block Elliptic Problems

shear: analytical solution for elastic beam under share tet, hex, dual: tetrahedral, hexahedral and dual meshes

Block AMG on Block Elliptic Problems

torsion: analytical solution for elastic beam under torsion tet, hex, dual: tetrahedral, hexahedral and dual meshes

Problem	Size B	Block GS, T	Block GS, Nit	Block AMG, T	AMG, Nit	Block Size
torsion-tet-1	5760	2,113	972	0,83	62	3
torsion-tet-2	46080	11,764	4220	2,7	69	3
torsion-tet-3	368640 -		-	18,775	88	3
torsion-hex-1	960	0,353	106	0,74	23	3
torsion-hex-2	7680	0,677	210	1,017	34	3
torsion-hex-3	61440	3,326	382	3,615	61	3
torsion-dual-1	1575	0,425	126	0,695	32	3
torsion-dual-2	9963	1,318	535	1,018	49	3
torsion-dual-3	70227	10,783	2336	3,974	79	3
Almost linear scaling!		(time in sec)		(time in sec)		57

Block AMG on Oil \& Gas Systems

twophase: oil recovery with water threephase: black oil recovery gas, water: gas or water are injected

Problem	Size	Block GS, T	Block GS, Nit	Block AMG, T	AMG, Nit	Block Size
twophase-1	512	0,229	64	0,232	11	2
twophase-2	2048	0,329	148	0,249	14	2
twophase-3	8192	0,749	295	1,445	22	2
threephase-gas-1	768	0,179	7	0,184	4	3
threephase-gas-2	3072	0,285	16	0,265	9	3
threephase-gas-3	12288	0,328	22	0,945	25	3
threephase-water-1	768	0,423	7	0,18	4	3
threephase-water-2	3072	0,223	15	0,22	6	3
threephase-water-3	12288	0,372	21	0,889	23	3
		(time in sec)		(time in sec)		

Almost linear scaling! Black oil systems break down on phase switch: mixing gas saturation and bubble point pressure in interpolation.

BAMG for 16 cores on INM RAS cluster

Problem	T	Ts	Tit	Nit Lvl	S	Ss	Sit	
Ph2-z3	0.1224	0.0323	0.0919	27	6	1.06	1.24	0.99
Ph3-injg3	0.1762	0.0535	0.1231	23	7	1.36	1.08	1.48
Ph3-injw3	0.1809	0.0529	0.1284	24	7	1.33	1.10	1.42
Ccfv-sd3	8.7520	0.3974	8.4062	546	5	2.52	1.87	2.54
Ccfv-sh3	1.8455	0.5675	1.2839	56	5	3.51	1.98	4.17
Ccfv-st3	17.9705	1.7372	16.2523	186	6	7.56	2.15	8.13
Ccfv-td3	1.8186	0.4040	1.4218	70	5	3.68	1.88	4.17
Ccfv-th3	2.6281	0.5804	2.0560	95	5	3.46	1.91	3.89
Ccfv-tt3	9.7643	1.5889	8.1925	93	6	6.68	2.37	7.50
NS-t3	16.3802	13.4383	2.9429	6	6	3.18	2.23	7.47
Rigid-s3	35.4617	3.0153	32.4814	312	6	2.97	2.71	2.99
Rigid-t3	12.0035	3.0038	9.0131	87	6	$\mathbf{1 0 . 5 8}$	2.72	13.19
Biot3	0.2299	0.1434	0.0881	11	5	2.65	1.88	3.87
Poromech3	0.2692	0.1747	0.0959	12	5	2.58	1.74	4.07
Maxwel13	2.5852	2.3507	0.2347	3	6	2.59	2.19	6.54

Actual speedup of BAMG for Rigid-t3 problem

MSU-L2 14-cores MVS-10Q 2×16 CKP 2x16
INM 2x20
S-HPC 2×26
ARM 2×64

Procedure scalability over 40 processors

solveP - smoother application multAv - matrix-vector product
$B=R A P$ - sparse matrix product
Oper - interpolation operator construction
bG - block matrix assembly vec - vector operations (ddot,daxpy)

Future Works

- Tackle problems that block AMG can't solve yet:
- blood coagulation, mixed Darcy
- method breaks down if block weights become singular
- Support variable block size:
- fluid-structure interaction problems
- mixed physics problems
- Bootstrap adaptive version
- SVD to make positive definite diagonal: $A_{i i}=U S V^{T} \rightarrow \bar{A}_{i i}=V U^{T} A_{i i}$
- Eigen-splitting to detect strong connections: $A_{i k}=A_{i k}^{+}+A_{i k}^{-}$with $A_{i k}^{+} \geq 0$ contributing to diagonal and $A_{i k}^{-}<0$ contributing to weight

Thank you for your attention

Contacts:

- Igor.Konshin@gmail.com
- Kirill.Terehov@gmail.com

Supported by:
Russian Science Foundation 21-71-20024

Parallel computations:
INM RAS, FRC CSC RAS, JSCC RAS, Lomonosov-2 MSU, Sechenov Univ.

