Методы ускорения программной реализации переноса пассивной примеси на графических ускорителях

Гащук Е.М.^{1,2,3}, Дебольский А.В.^{3,4}, Мортиков Е.В.^{3,2}

¹Мехмат МГУ имени М.В. Ломоносова, Москва ²Институт Вычислительной математики им. Г.И. Марчука РАН, Москва ³НИВЦ МГУ имени М.В. Ломоносова, Москва ⁴Институт физики атмосферы им. А.М. Обухова РАН, Москва

Зачем?

Расчеты для задач вычислительной гидродинамики, прогноза погоды и климата занимают большое количество времени.

Надо сокращать время вычислений по причине:

- сложность актуальных задач растет (ансамблевые прогнозы, моделирование большого числа примесей, например, реализация распространения аэрозолей и биохимических веществ)
- для актуальных задач необходимо воспроизводить численные эксперименты на сетках большого разрешения

Источник: <u>Gadhia, Bhoomi, et al.</u> Physics-Informed Machine Learning Platform NVIDIA Modulus Is Now Open Source, 23 Feb. 2023

Необходимо разрабатывать вычислительноэффективные алгоритмы, учитывающие архитектуру суперкомпьютеров Как?

Аппаратные вычисления в FP16 поддерживаются и для последних поколений CPU (например, Xeon Phi x200 и Skylake-X CPUs)

Понижение точности вплоть до половинной (поддерживается аппаратно на современных архитектурах GPU)

Рис. Битовое представление чисел с плавающей точкой, поддерживаемых современными архитектурами графическими ускорителей NVIDIA

• M. Chantry, T. Thornes, T. Palmer and P. Düben, 2019: Scale-selective precision for weather and climate forecasting Mon. Wea. Rev.

A. Dawson, P.D. Duben, D.A. MacLeod et al. 2018: Reliable low precision simulations in land surface models Clim Dyn

Перенос вычислений на графические ускорители и адаптация алгоритмов под современные НРС-системы

Моделирование океана

Для чего?

- Численные модели общей циркуляции океана являются важным инструментом в исследованиях Земной системы и необходимы для уточнения нашего понимания влияния океана на погоду и климат. Они являются неотъемлемой частью современных моделей прогноза погоды и климата
- Модели океана могут быть использованы для изучения переноса загрязнений, распространения льда, помощи в поисково-спасательных работах
- Сбор данных измерений в океане и проведение натурных экспериментов, особенно в глубинных слоях, связаны с большими трудностями и высокими затратами

Перенос концентрации примеси вдоль экватора

Рис. Распределение концентрации в начальном состоянии при моделировании переноса пассивной примеси на равномерной сетке в географической системе координат с горизонтальным разрешением Δλ,θ = 4°, жирная линия обозначает экватор

Проблема: для тестов на грубых сетках и ядро CPU, и узел оказались более эффективны, чем один GPU.

Рис. Ускорение выполнения расчетов переноса примеси на A100 GPU по отношению к CPU- ядру (**a**) и по отношению к CPU-узлу (**b**) в зависимости от схемы и горизонтального разрешения для двумерной модели.

Kernel fusion

Kernel fusion

Если между вызовами последовательности ядер нет точек синхронизации, то можно объединить последовательность в одно ядро, избегая многократных вызовов

1.
$$(ADV)_{k}^{n} = [\nabla \cdot (\mathbf{u}C_{k})]_{h}^{n}$$

2. $(RHS)_{k}^{n} = \frac{23}{12}(ADV)_{k}^{n} - \frac{4}{3}(ADV)_{k}^{n-1} + \frac{5}{12}(ADV)_{k}^{n-2}$
3. $C_{k}^{n+1} = C_{k}^{n} + (RHS)_{k}^{n} \cdot \Delta t$

В таком виде алгоритм состоит из расчета адвекции 1, интегрирования по времени 2 и обновления значений концентрации C_k для k-го вещества 3 на следующем (n + 1) шаге по времени. Мы объединили шаги 1 и 2 в одно ядро в случае схем DIV, SKEW и UW3.

Scalar fusion

(b)

Рис. Размещение памяти примесей в Ф: прямой порядок (а) и с переупорядочиванием (b), число соответствует индексу ячейки вычислительной сетки, цвет - концентрации C_k

Для реализации такого подхода мы объединили массивы, используемые для хранения значений концентрации C_k в единый вектор состояния полной системы Φ . Расположение данных концентрации в Φ может быть различным. Мы реализовали этот подход двумя способами в зависимости от размещении памяти k-ой примеси в Φ :

- 1. прямой порядок: $C_k[m] = \Phi[k \cdot N_g + m]$,
- 2. с переупорядочиванием: $C_k[m] = \Phi[m \cdot N_c + k],$

где порядок задан для k-го вещества, k = 1, . . . , N_c, и m-го индекса ячейки вычислительной сетки (сетка состоит из $N_g = N_x \cdot N_y$ ячеек), m = 1, . . . , N_g.

Результаты оценки производительности

Рис. Ускорение метода *scalar fusion* (прямой порядок) по отношению к базовой реализации для двумерной модели на A100 (а) и V100 (b) GPUs

Результаты оценки производительности

Рис. Ускорение метода *scalar fusion* с переупорядочиванием по отношению к *scalar fusion* с прямым порядком в случае двумерной модели для схем **DIV (a)** и **UW3 (b)** на V100 GPU

Моделирование турбулентных течений

Уравнение переноса:

$$\frac{\partial C}{\partial t} + \frac{\partial u_i C}{\partial x_i} = \frac{1}{Re \cdot Sc} \frac{\partial^2 C}{\partial x_i \partial x_i} - T^{-1}C$$

$$\mathbf{x} = (x_1,x_2,x_3)^T \equiv (x,y,z)^T -$$

пространственные координаты,

$$\mathbf{u}(\mathbf{x},t)=(u_1,u_2,u_3)^T\equiv (u,v,w)^T-$$

вектор скоростей,

 $Re = UH/\nu$ — число Рейнольдса, ν — кинематическая вязкость, С концентрация скаляра, $Sc = \nu/\xi$ число Шмидта, ξ — коэффициент диффузии, Т — время реакции Турбулентное течение Куэтта – течение между пластинами, движущимися в противоположных направлениях

Рис. Течение Куэтта между движущимися пластинами: L, W – продольный и поперечный размеры вычислительной области, H – высота канала, U – относительная скорость движения стенок

Рис. Продольная компонента скорости в течении Куэтта

Явная схема интегрирования уравнения переноса:

К

Все данные и вся арифметика в половинной точности

Реализация в половинной точности

Для использования половинной точности (FP16) необходимо учитывать следующие вещи:

• для реализации арифметических операция надо использовать специальные функции, которые, например, представлены в CUDA

_____device_____half ___<u>hadd</u> (const __half a , const __half b) Performs half addition in round-to-nearest-even mode. _____device_____half __<u>hsub</u> (const __half a , const __half b) Performs half subtraction in round-to-nearest-even mode.

 максимальное по модулю представимое число в FP16 есть 65504, минимальное (субнормальное) положительное значение ≈ 5.96 × 10⁻⁸ → возможное решение нормировка используемых констант, смена порядка арифметических операций

$$ADV^n = -\Delta t iggl[rac{\partial u_i C}{\partial x_i} iggr]_h^n - \,$$
расчет адвекции

4. $C^{n+1} = C^n + \operatorname{RHS}^n$

• при реализации в FP16 возможно возникновение стагнации → возможное решение — использование компенсационных алгоритмов

Численные результаты

Результаты оценки производительности

Рис. Ускорение моделирования переноса пассивной примеси на GPU к CPU в FP32 в зависимости от размера сетки (N).

Рис. Ускорение моделирования переноса пассивной примеси на GPU в FP16 к FP32 в зависимости от размера сетки (N).

Рис. Ускорение MPI - обменов массива скаляра в FP16 к FP32 в зависимости от размера сетки (N).

Рис. Ускорение реализации обмена с применением **IPC (a)** и **NCCL (b)** на V100 GPU в зависимости от размера пересылаемого сообщения.

Для выполнения расчетов были использованы вычислительные ресурсы СКЦ МГУ

Выводы

Ускорение переноса примеси в модели океана:

- Использование shared memory для реализации схем адвекции не дает значительного ускорения, а результаты применения kernel fusion показывают, что данный метод не всегда позволяет достичь ускорения расчетов
- Прямой подход техники scalar fusion повысил эффективность реализации во всех проведенных тестах, для двумерной модели метод обеспечил ускорение примерно в 5 раз на V100 и примерно в 9 раз на A100 на самой грубой сетке. Scalar fusion с переупорядочиванием обеспечил увеличение скорости вычислений примерно в 1.5 раза на V100 по сравнению с прямым методом для двумерного случая при проведении экспериментов на точных сетках для схем DIV и UW3.

<u>Ускорение за счет FP16:</u>

- Полная реализация блока переноса примеси в FP16 с использованием алгоритма Кэхэна дает достаточно точные численные результаты
- Ускорение вычислений GPU реализации в FP16 до 1.5 раз в сравнении с исполнением в FP32
- Уменьшение используемой памяти в 1.5 раза в сравнении с FP32 с учетом дополнительной памяти для хранения ошибки округления в алгоритме Кэхэна
- Ускорение вплоть до 1.6 раз исполнения МРІ-обменов за счет уменьшения объема передаваемых данных

Ускорение обмена между GPU: использование IPC ускоряет обмен во всех экспериментах (мак-

симальное ускорение ≈ 40 раз для сообщений размером 1МБ). Прменение NCCL позволяет получить выигрыш в скорости проведения обмена только в случае сообщений размером более 0.26МБ (максимальное ускорение ≈ 2.5 раза для сообщений размером 1МБ)

Спасибо за внимание!