
GPU implementation of the Q-VLPL3D plasma
simulation code

A.V.Snytnikov1,A.M.Pukhov2, M.M.Lavrentiev3,4

1Kaliningrad State Technical University

2University of Duesseldorf

3Novosibirsk State University

4Institute of Automation and Electrometry SB RAS

1 / 15



VLPL code

Virtual Laser-Plasma Lab
Pukhov, A. Three-dimensional electromagnetic relativistic
particle-in-cell code VLPL (virtual laser plasma lab). Journal of
Plasma Physics 61, 425 (1999)
particle-in-cell platform
multi-dimensional simulations of relativistic plasmas.
the full electromagnetic code VLPL
the hybrid version and the
the quasi-static version Q-VLPL3D

2 / 15



Physical probem: Wakefield acceleration

Wakefield acceleration is widely studied both numerically and
experimentally due to the possibility of building small but powerful
particle accelerators.
What’s going on: a powerful beam of ions drives out electrons while
passing through plasma.
The result are the extremely high local electric fields
the fields may be (and are) used for particle accelerators.

3 / 15



The model

∇× B⃗ =
1

c

∂E⃗

∂t
+

4π

c
j⃗

∇× E⃗ = −1

c

∂B⃗

∂t

(1)

And particle equations

∂p⃗
∂t = qE⃗ +

q

cγ
p × B⃗

γ =

√
1 +

p2

(mc)2

(2)

4 / 15



Particle motion equations: Quasistatic method

In the quasistatic model the beam is assumed to be changing very slowly,
so the equations of motion for model particles of plasma have the following
form:

∂p⃗
∂t =

E⃗ + v⃗ × B⃗

1− vx
∂y
∂t =

−vy
1− vx

∂z
∂t =

−vz
1− vx

(3)

5 / 15



Sequence of computations

The general sequence of computations in PIC codes is the following:
1 Evaluate the mesh values of charge density ρ and current j⃗
2 Compute the eletromagnetic fields, E⃗ and H⃗ for the next moment of

time.
3 Push the particles.

For quasistatic PIC codes step 3 is performed in two substeps.
1 there are two sorts of particles: beam particles and plasma particles.
2 The pushing of beam particles is performed in the common PIC way,

as described in e.g. .
3 The equations of motion for beam particles are the usual Newtonian

motion equations.
4 For plasma particles the different motion equations are used in the

form presented above.

6 / 15



Layers of plasma particles

∂p⃗
∂t =

E⃗ + v⃗ × B⃗

1− vx
∂y
∂t =

−vy
1− vx

∂z
∂t =

−vz
1− vx

(4)

One can notice that there’s no equation for X coordinate. This is because
in the quasistatic model X is the time-space coordinate, and the particles
just cannot move in the negative direction because it means moving
backward in time. So plasma particles are grouped in layers, each layer
having some X coordinate. Number of cells in a layer is equal to NY × NZ .

7 / 15



Performance

Profiling shows that the most of the worktime is taken by the following
code fragments:

Beam particles push
Plasma particles push
Solving Poisson equation by means of 2D FFT

8 / 15



GPU implementation

In order to build GPU implementation of Q-VLPL3D, the above mentioned
fragments of code were rewritten in a way more suitable for GPU:

Data format has been changed, which allowed to ensure the
localization of data. Q-VLPL3D code uses classes to store particle
data, as shown in listing. This is not the best choice for GPU memory.
An array or list of class intstance will lead to frequent cache misses
within GPU warps.
In order to facilitate the GPU memory use, we organize the particle
data in the so called CUDA surface (a data format originally
introduced to optimize 2D graphical data processing).
Performance limitations were investigated for the beam pushing kernel
with Nvdia Performance analysis tools. The limitations are: bad data
locality, non-optimal data access pattern and the main constraint is
the number of registers.

9 / 15



GPU implementation of Poisson solver

Another problem of GPU implementation of Q-VLPL3D code was the
need to implement real-to-real half-integer FFT.
There is no such transform in the cuFFT library.
A real implementation of this transform was performed using CUDA
surface memory, which is faster then the global GPU memory.
Since cuFFT library lacks 2D real-to real transform.

10 / 15



GPU performance

11 / 15



Comparing GPU and CPU performance

Рис.: Runtime (in milliseconds) for main operations in the code.

12 / 15



Volta and Ampere

The performance of the GPU implementation was tested
with recent Volta and Ampere GPUs resulting in the following
performance (for Volta):
277 microseconds for pushing beam particles,
for 19190 particles total, 3.5 ms is the duration of plasma particles
push for 16384 particles total per one layer,
and the 2D FFT is performed in 80 microseconds for 64× 64 array.

13 / 15



Maximal size of the model

The largest model used in computations with GPU has the mesh size
1000× 128× 128 nodes and 10,000 beam particles in a cell.
Let us point it once more that it is for a single Tesla VT100 Volta
GPU with 16Gb RAM onboard.
For the newest Ampere GPU with 80 Gb RAM one can use even larger
models.
In such a way, the coarse-grain MPI parallelization is not necessary any
more for this code.

14 / 15



Conclusion

One can see than there is some speedup for the GPU version of VLPL
code compared to CPU performance.
But the speedup itself is not very important. GPU implementation
enables to perform large scale simulation in reasonable time without
using MPI parallelization.
One can also consider the spatial size of a CPU cluster necessary for
MPI program.
the spatial size of Tesla VT100 as well as the energy consumption of
both.

15 / 15


