Classification of Cells Mapping Schemes Related to Orthogonal Diagonal Latin Squares of Small Order

Eduard Vatutin, Oleg Zaikin

Southwest State University, Kursk
ISDCT SB RAS, Irkutsk

Russian Supercomputing Days Moscow, 2023

Latin square

A Latin square (LS) of order N is a square table $\mathrm{N} \times \mathrm{N}$ filled with N symbols $0, \ldots, N-1$ such that all symbols within a single row or single column are distinct.

A diagonal Latin square (DLS) is a Latin square in which all symbols in both main diagonal and anti-diagonal are distinct.

A transversal of a Latin square is a set of N entries such that no pair of them share the same row, column or symbol.

Orthogonality

Two Latin squares $\mathrm{A}=(\mathrm{aij}), \mathrm{B}=(\mathrm{bij})$ of order N are orthogonal if all ordered pairs (aij , bij), $0 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{N}-1$ are distinct.

A set of Latin squares of the same order, all pairs of which are orthogonal, is called a set of mutually orthogonal Latin squares (MOLS). For diagonal Latin squares, MODLS is defined similarly.

Euler expected that no MOLS of order 10 exists.
First pair - Parker et al., 1960.

0	1	2	3	4	5	6	7	8	9
4	9	0	8	5	6	3	1	2	7
2	5	7	9	6	4	0	8	1	3
9	0	4	6	8	7	1	5	3	2
6	7	5	2	1	3	8	0	9	4
1	8	3	5	7	2	9	6	4	0
7	3	1	0	9	8	4	2	6	5
8	2	6	4	0	9	5	3	7	1
3	4	8	1	2	0	7	9	5	6
5	6	9	7	3	1	2	4	0	8

0	1	2	3	4	5	6	7	8	9
6	5	9	7	0	8	2	3	1	4
4	7	1	2	3	9	8	0	6	5
1	2	0	4	5	3	7	6	9	8
2	6	8	0	9	4	1	5	3	7
8	4	6	9	2	7	0	1	5	3
5	0	4	6	8	2	3	9	7	1
9	3	5	1	7	6	4	8	0	2
7	8	3	5	6	1	9	4	2	0
3	9	7	8	1	0	5	2	4	6

MODLS are very rare combinatorial objects:
~30 millions DLS of order 10 has only 1 pair of ODLS!

Gerasim@Home, 04.2017

Why is it interesting?

Applications:

- experiment planning
- cryptography
- error correcting codes
- scheduling

Most famous open problem related to Latin squares:

- existence of a triple of MOLS of order 10

Searching for MOLS via Euler-Parker method

1. Find all transversals of a given LS of order N .
2. Choose a subset of N disjoint transversals.
3. Form an orthogonal mate.
a)

0	1	2	3	4
4	2	3	0	1
3	4	1	2	0
1	3	0	4	2
2	0	4	1	3

2)

Searching for MODLS: approaches

- Brute Force + backtracking + clippings + ordering + ... (very long)
- SAT (very long)
- Euler-Parker (fast) - 200 - 800 DLS/s for different algorithms!
- Euler-Parker with canonizer (searching for symmetrically placed transversals in a LS and putting them in place of the main diagonal and main anti-diagonal by rearranging rows and columns) (very fast, $\simeq \mathbf{8 0 0 0}$ DLS/s)

DLS generators: ~6 $\mathbf{6 0 0} \mathbf{0 0 0}$ DLS/s

Bottleneck: transversals are to be found in Euler-Parker-based methods.

Transversals free search for MODLS: SODLS

- Self-orthogonal Latin square (SOLS) denotes a Latin square that is orthogonal to its transpose. SODLS is similar.
- Search without transversals is much faster.
- Extended self-orthogonal diagonal Latin square (ESODLS) denotes a diagonal Latin square that is orthogonal to some diagonal Latin square from the same main class (equivalence class obtained via M transformations).
- ESODLS is a generalization of SODLS and can be also used to find MODLS.

SODLS: $B=A^{\top}$

0	1	2	3	4	5	6	7	8	9
3	6	0	2	1	4	5	9	7	8
9	7	3	8	0	1	2	6	5	4
5	4	7	9	6	8	1	0	2	3
8	5	9	1	7	3	4	2	6	0
7	3	4	6	8	2	9	5	0	1
2	9	1	0	5	7	8	4	3	6
6	8	5	4	3	0	7	1	9	2
1	2	8	5	9	6	0	3	4	7
4	0	6	7	2	9	3	8	1	5

SODLS and ESODLS in OEIS

OEIS sequences (SODLS, H. White):

- A287761 - 1, 0, 0, 2, 4, 0, 64, 1152, 224832;
- A287762-1, 0, 0, 48, 480, 0, 322560, 46448640, 81587036160.

OEIS sequences (ESODLS, new):

- A309210-1, 0, 0, 1, 1, 0, 5, 23;
- A309598-1, 0, 0, 2, 4, 0, 256, 4608;
- A309599-1, 0, 0, 48, 480, 0, 1290240, 185794560.

This site is supported by donations to The OEIS Foundation.
013627 THE ON-LINE ENCYCLOPEDIA
OE $_{20}^{13}$ OF INTEGER SEQUENCES ${ }^{\circledR}$
${ }_{10}^{23} \mathrm{~T}_{12} 1121$ OF
founded in 1964 by N. J. A. Sloane

		Search	Hints					
(Greetings from The On-Line Encyclopedia of Integer Sequences!)								
A309598 Number of extended self-orthogonal diagonal Latin squares of order n with ordered first string.								
1, 0, 0, 2, 4, 0, 256, 4608 (list; graph; refs; listen; history; text; internal format) offset$1,4$								
comments	A self-orthogonal diagonal Latin square (SODLS) is a diagonal Latin square orthogonal to its transpose. An extended self-orthogonal diagonal Latin square (ESODLS) is a diagonal Latin square that has an orthogonal diagonal Latin square from the same main class. SODLS is a special case of ESODLS.							
LINkS	Table of n, $a(n)$ for $n=1 . .8$. E. I. Vatutin, Discussion about properties of diagonal Latin squares (in Russian) Index entries for sequences related to Latin squares and rectangles							
example								
	0123456789							
	1204579863							
	5016398247							
	9358217406							
	4635780921							
	8469132570							
	7890645132							
	2947803615							
	6571024398							
	3782961054							
has orthogonal diagonal Latin square								
0123456789								
3598620147								
4387219056								
6934801275								
7201935864								
2015764938								
8642097513								
1760548392								
$\begin{array}{llllllllllll}9 & 5 & 6 & 1 & 7 & 3 & 4 & 2 \\ 5 & 4 & 7 & 9 & 3 & 8 & 2 & 6 & 0 & 1\end{array}$								
from the same main class.								
Crossrefs	Cf. A287761.							
Sequence in context: $\frac{\text { A287761 }}{\text { a }}$ A009512 ${ }^{\text {A317411 }}{ }^{*}$ A305570 A287651 ${ }^{\text {A163259 }}$								
	Adjacent sequences: A309595 ${ }^{\text {A309596 }}$ A309597 $*$ A309599 A309600 A309601							
KEYTVORD	nonn, more							
AUTHOR	Eduard I. Vatutin, Aug 092019							
status	approved							

How can one find ESODLS? CMS-based search.

Cells Mapping Scheme (CMS) - a mapping of a Latin square to another Latin square.

CMS of order $\mathrm{N}-$ a square table comprised of elements $0, \ldots, \mathrm{~N}^{\wedge} 2-1$. CMS of order N - a permutation of size N .

											CMS											DLS B									
0		2	\%		5	-		\bigcirc	\bigcirc		77	17	97	67	57	47	37	7	87	27		6	8	1	9	0	4	3	7	5	2
1	2	0	4	3	7	9	8	6	5		71	11	91	8	51	41	31	1	81	21		5	2	3	8	4	9	0	1	7	6
7	6	1	5	9	3	0	2	4	8		79	19	99	69	59	49	39	9	89			0	5	4	3	6	7	1	9	2	8
5	0	8	7	6	2	4	3	9	1		76	16	96	66	56	46	36	6		26		2	9	7	5	8	3	4	6	1	0
6	9	5	2	8	1	3	4	0	7		75	15	95	65	55	45	35	5	85	25		4	7	0	6	9	1	2	5	8	3
3	4	7	1	5	9	8	0	2	6		74	14	94	64		44	34	4	84	24		1			7	5	8	6	4	0	9
2	8	4	0	7	6	5	9	1	3		73	13	93	68	53	43	33	3	83	23		8	4	9	0		2	7	3	6	5
9	5		\bigcirc			2	6	7	θ		78	10	90	60	50	40	30	0	80	20		9	1	8	2	3	6	-	0	4	7
4	7	9	6	0	8	1	5	3	2		78	18	98	68	58	48	38	8	88	28		7	6	5	1	2	0	9	8	3	4
8	3	6	9	2	0	7	1	5	4		72	12	92	62	52	42	32	2	82	22		3	0	6	4	7	5	8	2	9	1

Loops structure for CMS

- CMS cells CMS[i1] -> CMS[i2] -> ... -> CMS[iM] -> CMS[ii] form a loop of length M.
- Lengths of all CMS loops form a multiset $\mathbf{L}=\{\mathbf{M}, \ldots\}$.

Examples for order 10 : $\cdot L=\{1: 100\}-$ trivial; $\cdot L=\{1: 10,2: 45\}-$ canonical, all known ODLS;
$\cdot L=\{4: 25\}$ - rare 1-CF loop4 combinatorial structures; $\cdot L=\{1: 10,3: 30\}-$???

First new result: classification of ESODLS CMS of small order

- For orders 1-9, full classification was built via depth-first search.
- The classification is based on multisets of cycle lengths, which correspond to the obtained set of MODLS.

List of multisets of cycle lengths for ESODLS CMS of order 4

No.	Multiset	MODLS	CMS
1	$\{1: 16\}$	-	trivial CMS 0
2	$\{1: 4,2: 6\}$	bachelor, 1-CF	canonical CMS 1
3	$\{2: 8\}$	-	-
4	$\{4: 4\}$	bachelor, 1-CF	CMS 3

List of multisets of cycle lengths for ESODLS CMS of order 5

No.	Multiset	MODLS	CMS
1	$\{1: 25\}$	-	trivial CMS 0
2	$\{1: 5,2: 10\}$	bachelor, 1-CF	canonical CMS 1
3	$\{1: 1,4: 6\}$	bachelor, 1-CF	CMS 13
4	$\{1: 1,2: 12\}$	-	-
4	$\{1: 9,2: 8\}$	-	-

Structures of MODLS (Eduard Vatutin et al)

Order 10: experiment in Gerasim@home

- There are 15360 ESODLS CMS of order 10 (easy to find).
- However, it is hard to find matching MODLS for all of them to complete the classification.
- For order 10, a series of short experiments was carried out in a volunteer computing project Gerasim@home.
- As a result, cycles of MODLS of order 10, which match ESODLS CMS, were found. In turned out, that all of them have either length 2 or 4.
- For some ESODLS CMS, it is time-consuming to find all matching MODLS via depth-first search.

SAT

Boolean satisfiability problem (SAT) - for an arbitrary propositional Boolean formula to determine if there exists such assignment of Boolean variables from this formula that makes it true.

Usually, a formula in considered in the Conjunctive Normal Form (CNF) that is a conjunction of disjunctions.

An example of CNF with 3 disjunctions over 5 variables:

$$
C=\left(x_{1} \vee \overline{x_{2}}\right) \cdot\left(x_{2} \vee x_{3} \vee \overline{x_{4}}\right) \cdot\left(\overline{x_{3}} \vee x_{4} \vee \overline{x_{5}}\right)
$$

This CNF is satisfiable, e.g., on (11001).

X-based diagonal fillings and ESODLS CMS

- In [1], X-like partial Latin squares of order 10 for ESODLS CMS were proposed.
- First, all distinct partial Latin squares with known main diagonal are formed.
- Then all possible M-transformations are applied to them, and the obtained partial Latin squares are normalized by the main diagonal.
- As a result, in these X-like partial Latin squares, the main diagonal has values $0, \ldots, 9$, while the main anti-diagonal is also known, but it may have any values.
- Finally, lexicographically minimal representatives are chosen, and each of them corresponds to an equivalence class. Such representatives are called highly normalized DLSS.
- There are $\mathbf{6 7}$ highly normalized DLSs of order $\mathbf{1 0}$.
[1] Vatutin, E.I., Belyshev, A.D., Nikitina, N.N., O.Manzuk, M.: Use of x-based diagonal fillings and esodls cms schemes for enumeration of main classes of diagonal latin squares (in russian). Telecommunications 1(1), 2-16 (2023)

Second new result: searching for MODLS via SAT and ESODLS CMS

- For order 10, CMS 1234, 3407, 4951, and 5999 were considered (out of 15360).
- For each of them a CNF was constructed that encodes searching for a pair of MODLS of order 10 that matches the CMS.
- Each of four CNF was divided into 67 CNFs by assigning X-like fillings in the first DLS.
- A sequential SAT solver Kissat was run on each of 268 CNFs on a computer.
- All were solved - maximal runtime is 2 hours.
- For CMS 1234, 3407, 4951, all CNFs were unsatisfiable, so it was proven that there is no corresponding pair of MODLS.
- For CMS 5999, 1 CNF was satisfiable, and all 8 pairs of MODLS were found.
- Thus, for 4 CMS our of 15360 all matching MODLS were found on a computer.
- It is planned to process the remaining CMSs in a volunteer computing project.

One found pair of MODLS

$$
\left(\begin{array}{llllllllll}
0 & 2 & 5 & 7 & 9 & 4 & 8 & 6 & 3 & 1 \\
3 & 1 & 6 & 4 & 5 & 8 & 7 & 9 & 0 & 2 \\
5 & 8 & 2 & 6 & 1 & 7 & 9 & 3 & 4 & 0 \\
9 & 4 & 7 & 3 & 6 & 0 & 2 & 8 & 1 & 5 \\
8 & 3 & 1 & 9 & 4 & 6 & 5 & 0 & 2 & 7 \\
2 & 9 & 8 & 1 & 7 & 5 & 0 & 4 & 6 & 3 \\
1 & 7 & 3 & 8 & 0 & 2 & 6 & 5 & 9 & 4 \\
6 & 0 & 9 & 2 & 3 & 1 & 4 & 7 & 5 & 8 \\
7 & 5 & 4 & 0 & 2 & 9 & 3 & 1 & 8 & 6 \\
4 & 6 & 0 & 5 & 8 & 3 & 1 & 2 & 7 & 9
\end{array}\right)\left(\begin{array}{llllllllll}
3 & 8 & 1 & 2 & 0 & 4 & 6 & 9 & 5 & 7 \\
9 & 2 & 3 & 1 & 5 & 0 & 8 & 7 & 6 & 4 \\
8 & 4 & 5 & 6 & 3 & 9 & 2 & 1 & 7 & 0 \\
5 & 9 & 7 & 4 & 8 & 2 & 0 & 3 & 1 & 6 \\
7 & 0 & 9 & 3 & 6 & 5 & 4 & 8 & 2 & 1 \\
1 & 6 & 2 & 8 & 4 & 7 & 9 & 5 & 0 & 3 \\
0 & 5 & 6 & 9 & 7 & 3 & 1 & 2 & 4 & 8 \\
4 & 1 & 8 & 7 & 2 & 6 & 3 & 0 & 9 & 5 \\
6 & 3 & 0 & 5 & 9 & 1 & 7 & 4 & 8 & 2 \\
2 & 7 & 4 & 0 & 1 & 8 & 5 & 6 & 3 & 9
\end{array}\right)
$$

Corresponding X-like filling:

$$
\left(\begin{array}{c}
0--------1 \\
-1------0- \\
--2----3-- \\
---3--2--- \\
----46---- \\
----75---- \\
---8--6--- \\
--9----7-- \\
-5------8- \\
4--------9
\end{array}\right)
$$

Conclusions

- The present paper proposes a classification of cells mapping schemes based on extended self-orthogonal diagonal Latin squares.
- For order 1-9, the classification is fully presented, while for order 10 it is partial.
- Some experiments for order 10 were held in a volunteer computing project.
- Preliminary results on finding MODLS of order 10 via SAT and ESODLS CMS are given.
- Based on SAT results, it is planned to start a large-scale experiment in a volunteer computing project to complete the classification for order 10.

Thank you for your attention!

Thanks to all the volunteers who took part in the Gerasim@home and RakeSearch projects!

WWW: http://evatutin.narod.ru, http://gerasim.boinc.ru E-mail: evatutin@rambler.ru LJ: http://evatutin.livejournal.com Skype: evatutin

