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Latin square
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A Latin square (LS) of order N is a square table N × N filled with N 
symbols 0, . . . ,N −1 such that all symbols within a single row or single 
column are distinct.

A diagonal Latin square (DLS) is a Latin square in which all symbols in 
both main diagonal and anti-diagonal are distinct.

A transversal of a Latin square is a set of N entries such that no pair of 
them share the same row, column or symbol.



Orthogonality
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Two Latin squares A = (aij),B = (bij) of order N are orthogonal if all ordered 
pairs (aij , bij), 0 ≤ i, j ≤ N −1 are distinct.

A set of Latin squares of the same order, all pairs of which are orthogonal, 
is called a set of mutually orthogonal Latin squares (MOLS). For diagonal 
Latin squares, MODLS is defined similarly.

Euler expected that no MOLS of order 10 exists.
First pair — Parker et al., 1960.

MODLS are very rare combinatorial 
objects:

~30 millions DLS of order 10 
has only 1 pair of ODLS!



Why is it interesting?
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Applications:

◼ experiment planning

◼ cryptography

◼ error correcting codes

◼ scheduling

Most famous open problem related to Latin squares: 

◼ existence of a triple of MOLS of order 10



Searching for MOLS via Euler-Parker method
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1. Find all transversals of a given LS of order N.
2. Choose a subset of N disjoint transversals.
3. Form an orthogonal mate.



Searching for MODLS: approaches
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• Brute Force + backtracking + clippings + ordering + … (very long)

• SAT (very long)

• Euler-Parker (fast) – 200 – 800 DLS/s for different algorithms!
• Euler-Parker with canonizer (searching for symmetrically placed

transversals in a LS and putting them in place of the main diagonal and 
main anti-diagonal by rearranging rows and columns) (very fast, ~8000 
DLS/s)

DLS generators: ~6 600 000 DLS/s

Bottleneck: transversals are to be found in Euler-Parker-based methods.



Transversals free search for MODLS: SODLS
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• Self-orthogonal Latin square (SOLS) denotes a Latin square that is 
orthogonal to its transpose. SODLS is similar.

• Search without transversals is much faster.

• Extended self-orthogonal diagonal Latin square (ESODLS) denotes a 
diagonal Latin square that is orthogonal to some diagonal Latin square 
from the same main class (equivalence class obtained via M-
transformations).

• ESODLS is a generalization of SODLS and can be also used to find 
MODLS.

SODLS: B = AT



SODLS and ESODLS in OEIS
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OEIS sequences (SODLS, H. White):

• A287761 — 1, 0, 0, 2, 4, 0, 64,

1152, 224832;

• A287762 — 1, 0, 0, 48, 480, 0,

322560, 46448640,

81587036160.

OEIS sequences (ESODLS, new):

• A309210 — 1, 0, 0, 1, 1, 0, 5, 23;

• A309598 — 1, 0, 0, 2, 4, 0, 256,

4608;

• A309599 — 1, 0, 0, 48, 480, 0,

1290240, 185794560.



How can one find ESODLS? CMS-based search.
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1 2 3 4 5 6 7 8 9

1 2 0 4 3 7 9 8 6 5

7 6 1 5 9 3 0 2 4 8

5 0 8 7 6 2 4 3 9 1

6 9 5 2 8 1 3 4 0 7

695 2813 4 07

6 952 8 1 34 0 7

69 28 13 4 07

69 5 28 1 34 07

6 9 528 13 40 7

DLS A

17 97 67 57 47 37 7 87 27

71 11 91 61 51 41 31 1 81 21

79 19 99 69 59 49 39 9 89 29

76 16 96 66 56 46 36 6 86 26

75 15 95 65 55 45 35 5 85 25

74 14 94 64 54 44 34 4 84 24

73 13 93 63 53 43 33 3 83 23

70 90 60 50 40 30 0 80 20

78 18 98 68 58 48 38 8 88 28

72 12 92 62 52 42 32 2 82 22

CMS

6 8 1 9 0 4 3 7 5 20 77

DLS B

2 3 8 4 9 0 1 7 6

0 5 4 3 6 7 1 9 2 8

2 9 7 5 8 3 4 6 1 0

4 7 0 6 9 1 2 5 8 3

1 3 2 7 5 8 6 4 0 9

8 4 9 0 1 2 7 3 6 5

9 1 8 2 3 6 5 4 7

7 6 5 1 2 0 9 8 3 4

3 0 6 4 7 5 8 2 9 1

05 10
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Cells Mapping Scheme (CMS) — a mapping of a Latin square to another Latin 
square.

CMS of order N – a square table comprised of elements 0, …, N^2 – 1.

CMS of order N – a permutation of size N.



Loops structure for CMS
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• CMS cells CMS[i1] -> CMS[i2] -> … -> CMS[iM] -> CMS[i1] form a loop of length
M.

• Lengths of all CMS loops form a multiset L = {M, …}.

DLS A DLS B

DLS C DLS D

ESODLS cCMS –

ESODLS CMS 4951

ESODLS cCMS –

ESODLS CMS 3407

ESODLS cCMS –

ESODLS CMS 3407

ESODLS cCMS –

ESODLS CMS 4951

ESODLS cCMS –

ESODLS CMS 3407

ESODLS cCMS –

ESODLS CMS 4951

ESODLS cCMS –

ESODLS CMS 3407

ESODLS cCMS –

ESODLS CMS 4951

Examples for order 10:

•L = {1:100} — trivial;

•L = {1:10, 2:45} — canonical, 
all known ODLS;

•L = {4:25} — rare 1-CF loop-
4 combinatorial structures;

•L = {1:10, 3:30} — ???



◼ For orders 1-9, full classification was built via depth-first search.

◼ The classification is based on multisets of cycle lengths, which correspond 
to the obtained set of MODLS.

First new result: classification of ESODLS CMS of small order

List of multisets of cycle lengths for ESODLS CMS of order 4

List of multisets of cycle lengths for ESODLS CMS of order 5



Structures of MODLS (Eduard Vatutin et al)
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◼ There are 15360 ESODLS CMS of order 10 (easy to find).

◼ However, it is hard to find matching MODLS for all of them to complete 
the classification.

◼ For order 10, a series of short experiments was carried out in a volunteer 
computing project Gerasim@home. 

◼ As a result, cycles of MODLS of order 10, which match ESODLS CMS, 
were found. In turned out, that all of them have either length 2 or 4. 

◼ For some ESODLS CMS, it is time-consuming to find all matching MODLS 
via depth-first search.

Order 10: experiment in Gerasim@home



SAT

Boolean satisfiability problem (SAT) - for an arbitrary propositional Boolean 

formula to determine if there exists such assignment of Boolean variables 

from this formula that makes it true.

Usually, a formula in considered in the Conjunctive Normal Form (CNF) that

is a conjunction of disjunctions.

An example of CNF with 3 disjunctions over 5 variables:

𝐶 = 𝑥1 ∨ 𝑥2 ⋅ 𝑥2 ∨ 𝑥3 ∨ 𝑥4 ⋅ (𝑥3 ∨ 𝑥4 ∨ 𝑥5)

This CNF is satisfiable, e.g., on (11001).



X-based diagonal fillings and ESODLS CMS

◼ In [1], X-like partial Latin squares of order 10 for ESODLS CMS were 
proposed. 

◼ First, all distinct partial Latin squares with known main diagonal are 
formed.

◼ Then all possible M-transformations are applied to them, and the 
obtained partial Latin squares are normalized by the main diagonal.

◼ As a result, in these X-like partial Latin squares, the main diagonal 
has values 0, . . . , 9, while the main anti-diagonal is also known, 
but it may have any values.

◼ Finally, lexicographically minimal representatives are chosen, and 
each of them corresponds to an equivalence class. Such 
representatives are called highly normalized DLSs. 

◼ There are 67 highly normalized DLSs of order 10.

[1] Vatutin, E.I., Belyshev, A.D., Nikitina, N.N., O.Manzuk, M.: Use of x-based diagonal 
fillings and esodls cms schemes for enumeration of main classes of diagonal latin squares 
(in russian). Telecommunications 1(1), 2–16 (2023)



Second new result: searching for MODLS via SAT and ESODLS CMS

◼ For order 10, CMS 1234, 3407, 4951, and 5999 were considered (out of 
15360).

◼ For each of them a CNF was constructed that encodes searching for a pair
of MODLS of order 10 that matches the CMS.

◼ Each of four CNF was divided into 67 CNFs by assigning X-like fillings in 
the first DLS.

◼ A sequential SAT solver Kissat was run on each of 268 CNFs on a 
computer.

◼ All were solved – maximal runtime is 2 hours.

◼ For CMS 1234, 3407, 4951, all CNFs were unsatisfiable, so it was proven 
that there is no corresponding pair of MODLS.

◼ For CMS 5999, 1 CNF was satisfiable, and all 8 pairs of MODLS were found.

◼ Thus, for 4 CMS our of 15360 all matching MODLS were found on a 
computer.

◼ It is planned to process the remaining CMSs in a volunteer computing
project.



One found pair of MODLS

Corresponding X-like filling:



Conclusions
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• The present paper proposes a classification of cells mapping schemes 
based on extended self-orthogonal diagonal Latin squares. 

• For order 1-9, the classification is fully presented, while for order 10 it is 
partial.

• Some experiments for order 10 were held in a volunteer computing 
project.

• Preliminary results on finding MODLS of order 10 via SAT and ESODLS 
CMS are given. 

• Based on SAT results, it is planned to start a large-scale experiment in a 
volunteer computing project to complete the classification for order 10.



Thank you for your attention!

Thanks to all the volunteers who took part in the 
Gerasim@home and RakeSearch projects!
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WWW: http://evatutin.narod.ru, http://gerasim.boinc.ru
E-mail: evatutin@rambler.ru

LJ: http://evatutin.livejournal.com
Skype: evatutin
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